Biochemical Markers of Iron Status in Hemodialysis Patients

Fatima Hukic1, Sabina Nuhbegovic2, Selmira Brkic3, Edin Ostrvica4, Sunita Custendil-Delic5, Sehveta Mustafic1

Department of Biochemistry, Clinical University Centre of Tuzla, Bosnia and Herzegovina1
Department of Physiology, Faculty of Medicine, University of Tuzla, Bosnia and Herzegovina2
Department of Pathophysiology, Faculty of Medicine, University of Tuzla, Bosnia and Herzegovina3
Health Centre „Dr Mustafa Sehovic“ of Tuzla, Bosnia and Herzegovina4
Polyclinic of Transfusiology, Clinical University Centre of Tuzla, Bosnia and Herzegovina5

INTRODUCTION

Secondary lack of iron in patients on hemodyalisis is the main cause of inadequate answer on therapy of recombinant human erythropoietin (rHuEPO). Therefore, it is very important to follow the status of iron in these patients. Objectives: The objectives of our study were to define the value of hemoglobin content in reticulocytes as predictor of functional iron deficiency on hemodialyzed treated patients with erythropoietin (rHuEPO) then evaluate the efficiency of using the value of hemoglobin content in reticulocytes in administration of iron HD (Patients on hemodialyzed). Patients and methods: It is a prospective study which included 53 patients treated on chronic hemodialysis and continuing hospital peritoneal dialysis (CAPD), all patients were given additional iron therapy intravenously in order to keep the level of ferritin between 300 µg/l and 500µg/ and transferrin saturation over 20%. The patients were both male and female randomly chosen. The following parameters connected to iron deficiency were compared in this study. The study was taken in the period from august to december 2008 at University Clinical Center Tuzla Results and discussion: The study included patients from chronic HD programme in therapy with rhEPO, iron intravenously, than patients on CAPD also in therapy with rhEPO and intravenously iron and patients on chronic HD with intravenously iron without rh EPO therapy. There wasn’t any significant difference between numbers of male and female patients that were examined and in control group. In this study the following parameters connected to iron deficiency were compared. There wasn’t any significant difference in values of serum ferritin, Ret-he and hemoglobin between the examined and control group. Still, it’s clear that members of the examined group had higher values of these parameters comparing to the control group. If we would use criterias like the saturation transferrin and the level of ferritin as referent standard we would have 26/53 (49,1%) patients with iron deficiency in the whole sample. Conclusion: Following chematological and biochemic parameters in examined patients on HD are giving us essential information for planing and leading an adequate erythropoietin therapy. For the maximum effect of rhEPO therapy, an adequate compensation of iron is necessary. KEYWORDS: RETICULOCYTES, IRON DEFICIENCY, HEMODYALIZED PATIENTS.

1. INTRODUCTION

Renal anaemia is an early sign of chronic kidney damage and it’s an often complication of kidney insufficiency. Three pathophysiology mechanisms are responsible for the beginning of anaemia. The insufficiency of erythropoietin synthesized is the primary factor, another mechanism includes inhibition of hema synthesized. Additional mechanisms are a short lifetime erythrocytes and bleeding tendency that contributes to the developing of anaemia as an hemolitic factor. Other possible causes of anaemia with patients on hemodialysis are lack of iron, folate, vitamin B12 and damaging blood red cells (1). Anaemia with patients who have chronic disactive kidneys is being diagnosed when the value of hemoglobin falls under 11 g/ dl. (hematocrit < 33%).

Anaemia diagnosis includes determining concentration of hemoglobin and hematocrit (level of anaemia) and indicators of blood red picture are: number of erythrocytes, mean volume of erythrocytes MCV (Mean Corpuscular Volumen erythrocitaes), mean content of hemoglobin on erythrocytes MCH (Mean Corpuscular Hemoglobin), mean concentration of hemoglobin on erythrocytes MCHC (Mean Corpuscular Hemoglobin concentration) for evaluating type of anemia, absolute number of reticulocytes (erythropoietic activity), serum ferritin (reserves of iron), functional iron available for erythropoiesis (measured by percentage of hypochromic erythrocytes, transferrin saturation and content on hemoglobin in reticulocytes Ret-He), C-reactive protein (level inflammation) and quality dialyzed treatment Kt/V. In some cases additional researches that need to be done include evaluating of occult gastrointestinal bleeding, concentration of vitamin B12 in serum and folata in erythrocytes, differential blood pic-
ture, number of thrombocytes, presence of hemolisys and examination of bony marrow.2

2. OBJECTIVES

The objective of our study is to define the value of hemoglobin content in reticulocytes as predictor of functional iron deficiency in patients on hemodialysis treated with erythropoietin (rHuEPO) then evaluate the efficiency of using value of hemoglobin content in reticulocytes in administration in iron HD (Patients on hemodialysis).

3. PATIENTS AND METHODS

It is a prospective study which includes 53 patients on chronic hemodialysis and continuing hospital peritoneal (CAPD), all patients were given additional iron therapy intravenously in order to keep the level of ferritin between 300 µg/l and 500µg/ and transferrin saturation over 20%. The patients were both male and female randomly chosen. In moment of including patients had sabilized hemoglobin (9-11g/dl) at least two measures in a row.

The normal concentration of iron in organism takes just 30%- 40% capacity transferrin for attaching iron, while the other part of transferrin is free-not saturated with iron.

The Study didn't include patients with malignant disease present. There are no ideal tests for following the iron value in patients who don't have enough iron and are receiving rEPO therapy. Available tests are measuring only a specific part of methabolic iron which makes a detailed analysis impossible. Tests that are measuring serum ferritin, transferrin saturation and part in hypochrom erythrocytes are used the most. The main problem with measuring serum ferritin value is not showing presence of functional iron deficiency. Transferrin saturation is presented by a part that is made by dividing serum ferritin with the total capacity connecting iron and it is a better indicator of functional iron deficiency (Fe/TIBC X 100%). The disadvantage of this method is a significant daily biological variation (30%).

The measuring of hypochrom red cells is a quite new technique, which came out from a new technological advance in automatization of counting cells which makes finding values of hemoglobin in erythrocytes more directly much easier. This procedure uses the flow cytometry method which determines intracellular concentration of hemoglobin in red cells population. Determination of hypochrom red cells is relatively faster and not expensive. The hemoglobin value in reticulocytes is measured by the same methods. The parameters is Ret-he determined on Sysmex XE 2100. In 53 patients from chronic programme dialysis and on CAPD who were on erythropoietin therapy and iron intravenously over three months, usual cheamatological and biochemical parameters were determined along with concentration of hemoglobin in reticulocytes (Ret-he); red cells, hemoglobin, hematocrit, MCV, MCH, MCHC, thrombocytes reticulocytes, iron, capacity of total iron binding-TIBC, UIBC, ferritin, transferrin saturation, C-RP, transaminases, Ik/V (measure doses of dalysis). All patients were determined by chematological and biochemical parameters monthly. Most patients were given additional iron therapy in order to keep the level of ferritin between 300-500 µg/L. Study was taken in the period from August to December 2008 year. All patients on chronic dialysis programme received epoetin alpha or beta, three times a week after hemodialysis and intravenously.

4. RESULTS

Statistics are made in software package SPSS 15.0 (Chicago, IL, USA).

The results were analyzed by standard method descriptivestatistics. Statistic significance of mean values of the measured parameters were tested by Kolmogorov-Smirnoff’s test. For all the calculations we used the significance level of p<0.05.

The average values of erythrocytes are compared, MCV, MCH, MCHC and hematocrit under experimental and control group (table 1). Table 1 shows that the control group had significantly higher erythrocytes values, while the experimental group had significantly higher MCH values. There was no significant difference between other analyzed parameters. Values of examined parameters referring to iron deficit are compared (table 2). There wasn’t any significant differences in values of serum iron, reticulocytes of hemoglobin and hemoglobinina between experimental and control group. Still, it’s obvious that members of the examined group had slightly higher values of presented parameters, than members of control group.

Values od TIBC, UIBC, and transferrin were significantly higher in control group (table 3). However, values of transferrin saturation were significantly higher in examined group (table 3). Referring values of transferrin, significant difference was found here significantly higher values of ferritin were found between examiners (table 3).

Using criteria for iron deficiency,

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group</th>
<th>Mean</th>
<th>SD</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erytrocytes</td>
<td>experimental</td>
<td>3.38</td>
<td>0.47</td>
<td>0.02</td>
</tr>
<tr>
<td>Rbc</td>
<td>control</td>
<td>3.89</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>MCV</td>
<td>experimental</td>
<td>96.87</td>
<td>10.14</td>
<td>0.34</td>
</tr>
<tr>
<td>control</td>
<td>94.38</td>
<td>7.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCH</td>
<td>experimental</td>
<td>31.59</td>
<td>2.42</td>
<td>0.02</td>
</tr>
<tr>
<td>control</td>
<td>29.73</td>
<td>2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCHC</td>
<td>experimental</td>
<td>320.88</td>
<td>8.87</td>
<td>0.09</td>
</tr>
<tr>
<td>control</td>
<td>315.81</td>
<td>12.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematocrit</td>
<td>experimental</td>
<td>.35</td>
<td>0.12</td>
<td>0.62</td>
</tr>
<tr>
<td>Ht</td>
<td>control</td>
<td>.36</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Comparative showing of average values Rbc, MCV, MCH, MCHC i Ht under experimental and control group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group</th>
<th>Mean</th>
<th>SD</th>
<th>95%CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>experimental</td>
<td>16.84</td>
<td>9.81</td>
<td>0.42</td>
</tr>
<tr>
<td>control</td>
<td>14.70</td>
<td>8.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIBC</td>
<td>experimental</td>
<td>37.95</td>
<td>9.81</td>
<td>0.005</td>
</tr>
<tr>
<td>controla</td>
<td>47.29</td>
<td>13.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UIBC</td>
<td>experimental</td>
<td>21.12</td>
<td>11.30</td>
<td>0.002</td>
</tr>
<tr>
<td>control</td>
<td>32.53</td>
<td>13.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transferin</td>
<td>experimental</td>
<td>1.58</td>
<td>0.42</td>
<td>0.001</td>
</tr>
<tr>
<td>control</td>
<td>2.07</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation transferin</td>
<td>experimental</td>
<td>44.64</td>
<td>23.90</td>
<td>0.04</td>
</tr>
<tr>
<td>control</td>
<td>32.06</td>
<td>17.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin</td>
<td>Expe.</td>
<td>715.41</td>
<td>411.95</td>
<td>0.02</td>
</tr>
<tr>
<td>Kontrola</td>
<td>403.03</td>
<td>566.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ret-He</td>
<td>experimental</td>
<td>33.92</td>
<td>3.52</td>
<td>0.16</td>
</tr>
<tr>
<td>control</td>
<td>32.32</td>
<td>4.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemooglobin</td>
<td>experimental</td>
<td>105.75</td>
<td>15.77</td>
<td>0.06</td>
</tr>
<tr>
<td>control</td>
<td>115.24</td>
<td>18.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparative showing of average values with parameters referring to iron deficit between experimental and control group.
frequencies of members of examined group considering number of patients with transferrin saturation less than 20 %, and the level of ferritin below 100 µg/L (absolute deficit), between 100 i 500 µg/L (relative deficit).

5. DISCUSSION

During the study, patients with chronic hemodialysis who were on erythropoietin (rh EPO) i intravenously therapy or per os iron, values of biochemical and hematological parameters were determined, that can be helpful in evaluating functional iron deficiency. In time before ESA (agents that stimulates erithropoiesis), dialyzed patients often had iron sufcit (with ferritin higher than 1000µg/l ), because of polytransfusion.

Adequate quantity of available iron is increasing erithropoiesis and decreasing the need for therapy with agents that are stimulating erithropoiesis. Absolute iron deficit is whith low capacities of iron, while functional iron deficit is with wrong mobilization of capacities of bony marrow.

Clear aditude about optimal level of hemoglobin is still not accepted, especially when talking about wheter it is the same hemoglobin for all patients.

It is proved that lower level of hemoglobin, at the beginning of a dialyzed treatment is significantly increasing risks refering to cardiac complication and death in first year of dialyzed and that early treatment can prevent such condition.

The average age in all samples was equal (53±9 year with min. 22 and max. 70 years old). There was a significant difference between the experimental (53±11 years) and the control group (53±7), while the number of examined members on chronic hemodialyzed programme and number of examined members of control group on continous (CAPD), was significantly different (p=0,02).

Average values of erithrocytes, MCV, MCH, MCHC i hematocrit under experimental and control group are compared. The control group had significantly higher values of erithrocytes (p=0,02) while the examined group had significantly higher values MCH (p=0,02), which was expected and the reason why they are getting rh EPO.

Values of reticulocytes, fraction immature reticulocytes, reticulocytes low, mean high fluorescence, thrombocytes i CRP between experimental and control group. There wasn’t any significant difference, except in higher values of reticulocytes in examined group, p-value (0,02) indicates on statistically significant difference. These are a reasonable higher number of reticulocytes as response to rhEPO therapy.

In the study (1997) was found that values of hemoglobin in reticulocytes are precisely accurate, and suitable for iron deficiency diagnosis with hemodialyzed patients who have values less than 26 pg, shows presence of iron deficiency. Sensitivity of 100% and specificity of 80%, were significantly more accurate than the ferritin and transferrin saturation proved. The same study found that ferritin has no level that is accurate for iron deficiency diagnosis, and at the same time it’s proved that transferrin saturation of 21% has a sensitivity of 81%, but specificity of 63%. When only transferrin saturation and serum ferritin are taken, they have small a sensitivity in diagnosys of iron status with patients in hemodialysis. When these values divergate, they became unreliable in leading iron therapy and generally indicate on functional iron deficit.

However, increasing concentration of ferritin in serum is not always combined with increasing of iron content on depou, but sometimes in pathologi cal conditions is a result of stronger releasing of ferritin from tissue or stronger sintesy of apoferritin mostly combined with strong sintesy of proetina acute phase. By increasing the concentration of ferritin in blood plasma is happening in period of acute virus hepatitis, and also in period of chronic inflammatory process and other pathological conditions.

In our research, values of following parameters refering to iron deficit are compared. There wasn’t any significant difference in values of iron serum, Ret-he and hemoglobin between experimental and control group.

However, it is clear that members of the examined group had slightly higher values of these parameters than the control group. Comparing the values of TIBC, UIBC, and transferrin between experimental and control group are statistically significantly different.

Transferrin saturation values were significantly higher in examined group (44,64 ± 23,9), than control group (32,06±17,37). When talking about values of ferritin, statistically singificant difference was found (p=0,02) – significantly higher values of ferritin with examined members (715,41±411,95) than in control group.

Level of serum ferritin is frequently increasing, independent from iron status, with factors such as inflammatory process, disease liver. Some studies are showing that with dialysed patients there is inflammation with a frequency of 30-50%. In the last phase of chronic kidney insufficiency, many patients have a biochemical reaction „chronical inflammation reaction“, that cause increasing of circulating level of reactants acute phase of inflammation such as CRP and amiloid A and secretoric production inflammator cellcs cytokinins.

Using criteria for iron deficit, frequencies of examined group refering to number of patients with transferrin saturation less than 20%, and with level of ferritin below 100 µg (absolute deficit), between 100 i 500µg (relative deficit), and over 500µg, are analized. Frequencies of patients who have a level of hemoglobin in reticulocytes less than 28 pg, are also analized. Iron deficiency is either absolute, when all body reserves are unavailable, or functional, when body has insufficient or even overloaded quantity of iron that can’t be activated fast enough for needs of bony marrow.

Number of all patients with transferrin saturation below 20% in complete sample was 13/53 (24,5%). Significantly a higher number of control group (X²=4,26; df=1; p=0,04) had lower transferrin saturation than the examined group.

In the complete sample there were
15/53 (28,3%) members examined with ferritin <100µg, and 8/53 (15,1%) members with ferritin between 100-150 µg.

There was significantly a higher number of examined members on control group (X²=14,27; df=2; p=0,001) who have levels of ferritin below 100µg. Comparative showing of number of patients considering level of contents of hemoglobin in reticulocytes, transferrin saturation and level of ferritin, is made.

If we would use as referent standard criteria of transferrin saturation and level of ferritin, we would have 26/53 (49,1%) patients with iron deficiency in the complete sample.

Concentration of hemoglobin in reticulocytes is tested, using Receiver Operating Characteristics (ROC) analysis.

Surface below ROC (AUROC) curve for reticulocytes Hb was 0.73 (%95 CI=0,59-0,84) and was statistically significant (p=0,001).

Using information provided by ROC curve, target value reticulocytes Hb with the best diagnostics performances was 31,1 pg. This value had sensitivity of 50%, specificity of 96%, positive predictive value of 93% and negative predictive value of 68%.

Slika 10 : Receiver Operating Characteristics (ROC) curve of diagnostic accuracy retikulocytog hemoglobina compared to usual criteria for deficit iron serum with patients on dialyzed 6.

CONCLUSION

Following chematological and biochimic parameters in examined patients on HD is giving us essential information for planing and leading an adequate erythropoietin therapy. Determination of hemoglobin content in reticulocytes has attributes that can provide an ideal test of iron status in HD patients specified for iron deficiency diagnosis.

For maximal effect of rhEPO therapy, adequate compensation of iron is necessary. With chronical kidney patients, transfusion of erithrocytes should be avoided14. For treatment of renal anemia an optimal dialysis is crucial 15.

REFERENCES