Study of effects of yoga and pranayam on human reaction time and certain physiological parameters in normal and hypertensive subjects

Tejaswini D Sonwane¹, Neelam V Mishra²

¹Department of Physiology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India.
²Department of Physiology, Government Medical College, Nagpur, Maharashtra, India.

Correspondence to: Tejaswini D Sonwane, E-mail: tejas9444@gmail.com

Received February 4, 2016. Accepted April 1, 2016

INTRODUCTION

Yoga is a process of gaining control over the mind, as defined by Patanjali. Stress has been implicated as one of the major causes of essential hypertension. Yoga works on every cell of the body. Yoga influences body as well as controls the stress in the individual. An index of the processing ability of central nervous system and a simple means of determining sensory-motor performance is referred to as reaction time (RT). It has been proclaimed that human performance including central neural processing is improved by yoga training. It improves cardiorespiratory performance, balances autonomic nervous system, decreases pulse, respiratory rate, systolic and diastolic blood pressure. Aims and Objective: To show the effects of yoga and pranayam on auditory and visual RT and on certain physiological parameters such as weight, body mass index, pulse rate, respiratory rate, systolic blood pressure, and diastolic blood pressure in normal and hypertensive subjects. Materials and Methods: This comparative type of study included 70 normal and 70 hypertensive subjects. It was carried on subjects between 30 and 60 years of age. Auditory reaction time (ART) and visual reaction time (VRT) were studied in subjects with “Response Analyzer” reaction time apparatus. The physiological parameters such as weight, body mass index, pulse rate, respiratory rate, systolic blood pressure, and diastolic blood pressure were measured. Parameters were measured in two sittings; on admission to yoga center and after 3 months. Statistical software STATA Version 10.0 was used for statistical analysis. Result: It was found that changes in the RT and physiological parameters were significant in hypertensive subjects when compared with normal individuals. Conclusion: Yoga is a helpful intervention in hypertensive subjects. Yoga and pranayam are more beneficial to hypertensive subjects. RT is an index of cortical arousal, and a decrease in it indicates an improved sensory-motor performance and an enhanced processing ability of the central nervous system.

KEY WORDS: Yoga; Pranayam; Reaction time; Hypertensive Subject
appreciable changes in blood pressure.[7–9] Yogic techniques especially Dhyana and Shavasana improve attentiveness. Increased attentiveness decreases reaction time. The time interval between the application of a stimulus and the emergence of an appropriate voluntary response by a subject is called RT. It involves stimulus processing, decision making, attention mechanism, and response programming.[10] With this point of view, we aim to study the degree of effect that yoga brings in normal subjects when compared with hypertensive subjects in terms of human RT, blood pressure, and various other physiological parameters.

This study shows the effects of yoga and pranayam on auditory and visual reaction time and on certain physiological parameters such as weight, body mass index, pulse rate, respiratory rate, systolic blood pressure, and diastolic blood pressure in normal and hypertensive subjects.

Materials and Methods

This comparative type of study was carried out in the yoga center in central India on normal and hypertensive individuals for 3 months. Approval from the Institutional Ethics Committee was obtained. The study included 70 normal and 70 hypertensive subjects. Planned study population included control group fulfilling the following criteria: Normal healthy adult volunteers between 30 and 60 years of age of both genders, non-smoker, nonalcoholic, not doing yoga previously, and not on any medication. Inclusion criteria for the study group: Subjects with essential hypertension, which included subjects between 30 and 60 years of age with hypertension diagnosed within last 5 years and are on same medication since 5 years, nonsmoker, nonalcoholic, and not doing yoga previously. Exclusion criteria: Subjects with stage-1 hypertension, not on any medication; with stage-2 hypertension; with hypertension with cardiovascular or cerebral complications; with secondary hypertension; and with chronic diseases other than hypertension were excluded from the study. Subjects already practicing yoga and pregnant women were also excluded.

Planned Intervention: After taking consent, a detailed history of the subjects was taken. General and systemic examination of the subjects was done. After screening with physical examination, subjects underwent yogic session daily for one-and-a-half hour duration from 6 am to 7.30 am in the morning for a period of 90 days (i.e., 3 months). The session started with Awayawa–dhyana and a short prayer, followed by various asanas such as paschimottanasan, vrukshasan, tadasan, padmasan, ardhpadasan, pranayam, and meditation and ended with a

Table 1: Effect of yoga on different parameters

<table>
<thead>
<tr>
<th></th>
<th>1st day</th>
<th>After 3 months</th>
<th>p</th>
<th>Mean change</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>70.11 ± 5.29</td>
<td>67.17 ± 5.42</td>
<td><0.0001**</td>
<td>3.04 ± 2.77</td>
<td>0.0030**</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>71.39 ± 8.20</td>
<td>67.26 ± 7.44</td>
<td><0.0001**</td>
<td>4.28 ± 1.53</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>26.27 ± 2.71</td>
<td>25.23 ± 2.71</td>
<td><0.0001**</td>
<td>1.15 ± 1.22</td>
<td>0.0055**</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>26.12 ± 3.47</td>
<td>24.62 ± 3.15</td>
<td><0.0001**</td>
<td>1.54 ± 0.59</td>
<td></td>
</tr>
<tr>
<td>Pulse rate (beats/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>72.7 ± 3.19</td>
<td>69.31 ± 2.85</td>
<td><0.0001**</td>
<td>3.15 ± 2.64</td>
<td>0.0104*</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>76.72 ± 4.63</td>
<td>72.24 ± 3.79</td>
<td><0.0001**</td>
<td>4.78 ± 2.01</td>
<td></td>
</tr>
<tr>
<td>Respiratory rate (respiration/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14.42 ± 2.37</td>
<td>11.90 ± 1.51</td>
<td><0.0001**</td>
<td>3.00 ± 2.33</td>
<td>0.0004**</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>17.4 ± 2.04</td>
<td>12.9 ± 1.58</td>
<td><0.0001**</td>
<td>4.37 ± 1.50</td>
<td></td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>116.45 ± 2.68</td>
<td>112.05 ± 1.95</td>
<td><0.0001**</td>
<td>4.63 ± 1.99</td>
<td>0.0004**</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>136.11 ± 7.88</td>
<td>130.70 ± 7.01</td>
<td><0.0001**</td>
<td>6.20 ± 3.05</td>
<td></td>
</tr>
<tr>
<td>DBP (mm Hg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>76.02 ± 2.95</td>
<td>71.73 ± 2.31</td>
<td><0.0001**</td>
<td>4.70 ± 1.90</td>
<td>0.0013**</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>88.0 ± 4.34</td>
<td>82.25 ± 3.79</td>
<td><0.0001**</td>
<td>5.83 ± 1.83</td>
<td></td>
</tr>
<tr>
<td>ART (milliseconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>181.05 ± 9.93</td>
<td>166.31 ± 6.50</td>
<td><0.0001**</td>
<td>15.55 ± 6.01</td>
<td>0.0442*</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>184.5 ± 10.18</td>
<td>166.78 ± 8.22</td>
<td><0.0001**</td>
<td>17.88 ± 6.54</td>
<td></td>
</tr>
<tr>
<td>VRT (milliseconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>196.17 ± 5.28</td>
<td>185.25 ± 4.72</td>
<td><0.0001**</td>
<td>10.91 ± 4.72</td>
<td><0.0001**</td>
</tr>
<tr>
<td>Hypertensives</td>
<td>192.25 ± 8.33</td>
<td>176.35 ± 6.76</td>
<td><0.0001**</td>
<td>15.9 ± 5.62</td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05, statistically significant; **p < 0.01.
Effects of yoga and pranayam on human reaction time Sonwane and Mishra

Statistical Analysis: Clinical parameters were compared between the 1st day and after 3 months in normal and hypertensive subjects when compared with normal subjects. The decrease in ART and VRT was statistically significant in hypertensive subjects when compared with normal subjects.

The subjects were given yoga training including asanas, pranayam, and meditation for 3 months. Physiological parameters such as weight, BMI, pulse rate, respiratory rate, SBP, DBP, ART, and VRT were studied at the beginning of the study and after 3 months.

In accordance to our finding, Khadka et al. showed significant decrease in body weight after yoga. Khadka et al. and Tundwala et al. showed statistically significant reduction in BMI, similar to our results.

The mechanism of the beneficial effect of yoga on the management of obesity cannot be explained by simple excess caloric expenditure because practice of asanas does not bring about increased, rapid large muscle activity and energy generation. However, yoga in the management of obesity is of significance. Pulse Rate (Beats/Min): Bharshankar et al., Vijayalakshmi et al., and Khadka et al. showed significant reduction of pulse rate after yoga training. These results are similar to our study. Slow breathing as in yogic practice enhances heart rate variability and baroreflex sensitivity by resynchronizing inherent cardiovascular rhythms. This is owing to increased vagal modulation. Yoga-based guided relaxation helped in the reduction of sympathetic activity with reduction in heart rate, skin conductance, oxygen consumption, and increase in breath volume. Statistically significant reduction in pulse rate after regular practice of yoga is attributed to increased vagal tone. Decreased sympathetic activity reduces catecholamine secretion and also leads to vasodilation leading to improvement in peripheral circulation. Regular yogic practices reduce basal metabolic rate and resting oxygen consumption. All these may be responsible for reduction in resting pulse rate.

Respiratory Rate (Breaths/Min): Our results are similar to the findings of Doijad and Surdi and Abel et al. They found significant decrease in RR. Recitation of the yoga mantra (chanting) slowed respiration to almost exactly six breaths per minute and enhanced heart rate variability and baroreflex sensitivity. Following pranayama for few weeks, the bulbo pontine complex is adjusted to a new pattern of breathing which is slower than its basal rhythm causing decrease in respiratory rate. During daily practice of pranayama, the fundamental activity of bulbopontine complex is altered in such a way as to bring down its rhythm by voluntarily extending the phases of inspiration and expiration by stretching to their fullest extents, thus making the lungs to work to their maximal extent to take O₂ and expire CO₂, maximally.

Systolic Blood Pressure (mm Hg): In accordance to our finding, studies done by Sundar et al., Murugesan et al., Dickinson et al., Schmidt et al., Joseph et al., Alexander et al., Steptoe and Patel and Marmot showed significant changes in SBP. Different mechanisms have been postulated to explain the blood pressure-lowering effect of weight loss, a reduction of extracellular volume thus decreasing cardiac output, suppression of the sympathetic nervous system, an improvement in insulin resistance, and a normalization of the aldosterone–renin interrelationship. The blood pressure-lowering effect of weight loss is most likely a result of an improvement in insulin sensitivity and a decrease in sympathetic nervous system activity and occurs independent of salt restriction. The mechanism of yoga-induced blood pressure reduction may be attributed to its beneficial effects on the autonomic neurological function. Impaired baroreflex sensitivity has been increasingly postulated to be one of the major causative factors of essential hypertension. Practice of yogic postures has been shown to restore baroreflex sensitivity. Level of adverse neurohormonal activity can be quantitated by the measurement of specific markers in serum and urine. It has been described that regular practitioners of yoga asanas showed a significant reduction in the markers of intrinsic neurohormonal activity such as urinary excretion of adrenaline, noradrenaline, dopamine, aldosterone, as well as serum testosterone and luteinizing hormone levels.

It is known that the mental state can influence the hypothalamic-pituitary-adrenal (HPA) axis and alter the cortisol levels. Cortisol, discharged from the adrenal cortex, is a biochemical index of HPA axis activation and is a significant marker associated with psychological stress.

Yoga promotes a reduction in sympathetic activation, enhancement of cardiovagal function, and a shift in autonomic nervous system from primarily sympathetic to parasympathetic. Increased vagal tone, decreased workload on heart, decreased cardiac output, and decreased SBP. Asanas such as paschimottanasan have been proved to increase baroreceptor sensitivity. Yogic practice, through the restoration of
baroreceptor sensitivity, resulted in significant reduction in the blood pressure of patients who participated in yoga exercise.
Both mental relaxation and slow breathing results in a fall in systolic blood pressure, diastolic blood pressure, heart rate, and respiratory rate.

Diastolic blood pressure (mmHg): In accordance to our finding, van Montfrans et al. [36] Steptoe, [37] Patel and Marmot, [38] Wennenberg et al. [39] and Joseph et al. [40] showed significant findings: Yoga alters hypothalamic discharge leading to decrease in sympathetic tone, peripheral resistance, and, hence, DBP. [2,13]

Meditation practice results in decreased sympathetic activation, decreased hypothalamic-pituitary-adrenocortical activation, enhanced neurophysiological function, and enhanced serotonin metabolism. Such global physiological changes contribute to the reduction in BP seen across all sex and risk factor subgroups. [22]

ART and VRT: In accordance to our finding, studies done by Malathi and Parulkar, [41] Madanmohan et al., [42] Bhavanani et al., [43] Noorjahan et al., [44] and Jore et al. [45] showed statistically significant reduction in ART values after yoga practice. Mean VRT values in normal subjects reduced from 196.17 ± 5.28 milliseconds on the 1st day to 185.25 ± 4.72 milliseconds after 3 months. Mean VRT values in hypertensive subjects reduced from 192.25 ± 8.33 milliseconds on the 1st day to 176.35 ± 6.76 milliseconds after 3 months. Results are statistically significant.

In accordance to our finding, studies done by Malathi and Parulkar, [41] Madanmohan et al., [42] Bhavanani et al., [43] Noorjahan et al., [44] and Jore et al. [45] showed statistically significant reduction in VRT values after yoga practice.

Regular practice of meditation is linked with increased thickness in a subset of cortical regions associated with somatosensory, auditory, visual, and interoceptive processing. [44,42] Activation of right hemisphere is seen during the actual act of meditation. [44,42]

It is especially fascinating to find that a lot of changes linked with the active meditation state were noted in the frontal lobe. This area is involved with the focus of attention. [47] Regular meditation practice may bring down age-related thinning of the frontal cortex. Increased cortical thickness could be owing to greater axonization per neuron, increased glial volume, or raised regional vasculature. [44,45] The right anterior insula is associated with bodily attention and raised visceral awareness. Increased thickness in this region is associated with increased capacity for awareness. [43]

The right hemisphere is essential for sustaining attention, which is a center for in sight meditation. It has been hypothesized that by becoming increasingly more aware of sensory stimuli during formal practice, the meditation practitioner is progressively able to use this self-awareness to more successfully navigate through potentially stressful encounters that emerge throughout the day. [44,45] Long-term meditation practice is linked with modified resting electroencephalogram patterns, indicative of long-lasting alterations in brain activity. [42] Meditation reflects cognitive brain functions such as sequential information processing, stimulus discrimination, and short-term memory. [46]

Yoga reduces physiological arousal, simultaneously improving performance on tasks requiring attention. [47-50]

Conclusion

It was found that changes in the physiological parameters were significant in hypertensive subjects when compared with normal individuals. Yoga is a helpful intervention in hypertensive subjects. Yoga and pranayam are more beneficial to hypertensive subjects than normal individuals.

In normal subjects, yoga is helpful for keeping the parameters at the baseline, which plays a role in prevention of the disease.

Pranayam and meditation improve (a) sensory information processing ability; (b) central integration of learning and memory, and (c) motor function and coordination, visual scanning, mental flexibility, sustained attention, psychomotor speed, and speed of information processing. [49,50] These skills improve sustained attention. This probably improves ART and VRT. This is of applied value in conditions needing faster reactivity such as sports, machine operation, race driving, and specialized surgery. It may also be of value to train mentally challenged children and older sports persons who have prolonged RT. Moreover, yoga and pranayam reduce weight, pulse rate, and blood pressure, which are the risk factors for noncommunicable diseases.

References

Effects of yoga and pranayam on human reaction time Sonwane and Mishra

How to cite this article: Sonwane TD, Mishra NV. Effects of yoga and pranayam on human reaction time and certain physiological parameters in normal and hypertensive subjects. Natl J Physiol Pharmacol 2016;6:323-328

Source of Support: Nil, Conflict of Interest: None declared.