Introduction: Aspergillosis is a serious pathologic condition caused by Aspergillus organisms and is frequently seen in immunocompromised patients. Aspergillus species causes a variety of pulmonary diseases such as saphrophyticus (aspergilloma/mycetoma), hypersensitivity reaction (allergic bronchopulmonary), semi-invasive (chronic necrotizing) and angioinvasive aspergillosis.

Case report: We report a case of pulmonary aspergilloma (PA) in a 38-year-old patient who was previously healthy with complaints of fever and hemoptysis. PA was diagnosed radiologically and confirmed by serology. Conclusion: Oral itraconazole was administered. The patient responded well to the treatment with improvement in his systemic symptoms and regression of the pulmonary lesions. Key words: aspergilloma, hemoptysis, treatment.

1. INTRODUCTION

Aspergillosis is a mycotic disease caused by Aspergillus species, usually A. fumigatus. Aspergillus is a genus of ubiquitous soil fungi and humans get infected by inhalation of airborne spores (1). The histologic, clinical, and radiologic manifestations of pulmonary aspergillosis are determined by the number and virulence of the organisms and the patient’s immune response. It is chronic and silent, but may have fulminating and fatal course (2).

Aspergillus primarily affects the lungs, causing four main syndromes: allergic bronchopulmonary aspergillosis (ABPA), chronic necrotizing aspergillus pneumonia (CNPA), aspergilloma and invasive aspergillosis (3). Pulmonary aspergilloma (PA) is an infectious disease originating from colonization of Aspergillus fumigatus in lung cavities and it is frequently and concomitantly present with pulmonary diseases such as tuberculosis cavity, sarcoidosis, cavity neoplasia, bronchietasis, lung abscess, bronchial cyst and pulmonary infarct (4).

The aim of this case is to emphasize diagnostic difficulties and treatment dilemma in atypical cases of pulmonary aspergiloma, especially in young patients.

2. CASE REPORT

A 38-year-old man, member of the Roma population, with social history included a 20 packs/year smoking habit, who was otherwise healthy, presented with a history of fever (up to 39°C) and chills and some episodes of small hemoptysis for 3 weeks. There was no history of chest pain, shortness of breath and he denied any history of weight loss. On physical examination, apart from sinus tachycardia, he appeared healthy with normal findings. A chest radiography revealed a cavitory lesion with “air crescent sign” (Figure 1). Routine laboratory examination revealed hypokalaemia, hyperproteinaemia, hypoalbuminaemia, elevated C reactive protein 125.3 mg/L (< 7), fibrinogen 8.5 g/l (2-4g/L), aspartate aminotransferase 70 U/L (<37), alanine aminotransferase 89 U/L (<43 U/L), leucocyte count 21, 3 x 10⁹/L (4.0–10.0 x 10⁹/L) and a mild degree of anaemia, with a haemoglobin level of 10.8 g dl. Serial of sputum cultures were negative. Anti HCV, HIV and HbsAg were negative.

Computed tomography described bullous changes in the tops of both lungs and homogeneous condensation with permeated many illuminating in right lobe (Figure 2). Fiberoptic bronchoscopy discovered light mucosal hyperemia for right upper lobe with several point sources of bleeding. Pathohistology of bronchial biopsy was unsignificant. Culture of broncho-alveolar lavage (BAL) fluid yielded negative results.
On admission, patient was subfebrile (up to 37.4°C). At first, empiric therapy was given (ciprofloxacin and ceftriaxone). Six days upon arrival, patient got worsen with high fever (up to 41°C) we decided to introduce empirical treatment for tuberculosis during one month. In the meantime, serology results has come and showed positive antifungal serum IgG (anti IgG At 157U/ml (≤70)), and IgM (Anti Aspergillus IgM At 335U/ml (≤70)) antibodies, but serum antigen was not isolated. Oral itraconazole (300mg daily) was introduced and he responded satisfactory. Patient had no fever the third day after therapy. On follow up, six weeks upon therapy, he had no fever, cough or haemoptysis, and there was a moderate regression of radiological findings (Fig. 3). Our patient had fever and haemoptysis, and radiologically specific infiltrative shadow.

The presumptive diagnosis of aspergilloma is made by imaging, but the definite diagnosis relies on other clinical data. The chest radiograph is of little use in the early stages of disease, because the incidence of nonspecific changes is high. Chest CT scan leads to earlier diagnosis and improved outcomes in these patients. The typical chest CT scan findings in patients suspected to have PA include multiple nodules and the halo sign or at a later stage as an air crescent sign, which represents crescent-shaped lucency in the region of the original nodule secondary to necrosis (8, 9). Positive serology precipitins to A. fumigatus are diagnostic, but the test will be negative if some species other than A. fumigatus, or another fungus, such as Zygomycetes or Fusarium spp (7). Serum IgG antibodies to Aspergillus are positive in almost every case. Aspergillus antigen has been recovered from the bronchoalveolar lavage fluid of patients with aspergilloma, but the diagnostic value of this test is variable (10). The diagnosis of aspergilloma in our case was made by positive serology.

Pulmonary aspergilloma usually arise from colonization of aspergillus in preexisting lung cavities such as tuberculosis, sarcoidosis, bronchiectasis, bronchial cysts and bulla, but also complicate ankylosing spondylitis, neoplasm and pulmonary infection. Among this tuberculosis is the most common associated condition (11). In a study on 544 patients with pulmonary cavities secondary to tuberculosis, 11% had radiological evidence of aspergilloma (12). In the setting of diagnostic work-up, concernig following data: not responding to antibiotics, temperature jump up to (40°C), radiological finding and localization and the fact of belonging to socially vulnerable population, we decide to introduce anti tuberculosis therapy. Upon arrival of positive serology, oral Itraconazole in dosage 300mg per day was introduced. Patient was afebrile the third day.

Up to now, there is no complete consensus in treatment of PA. Treatment is considered only when patients become symptomatic, usually with haemoptysis. Inhaled, intracavitary, and endobronchial instillations of antifungal agents as well as intravenously administered amphotericin B have been tried, but failed in success (13, 14). Administration of amphotericin B percutaneously guided by CT scan can be effective for aspergilloma, especially in patients with massive haemoptysis, with resolution of haemoptysis within few days (15, 16).

Oral itraconazole has been used, with radiographic and symptomatic improvement in half to two-thirds of patients, and occasional patients having a complete response. Itraconazole is a useful agent for aspergilloma management, because it has a high tissue penetration, but since it works slowly it is not in use in cases of massive, life-threatening haemoptysis (17, 18).

The surgical treatment of pulmonary aspergilloma is controversial. Some surgeons agree that most of the patients with minor haemoptysis can be managed in a conservative way (19). Several surgeons insist that all good-risk patients, even if asymptomatic, should undergo lung resection to avoid the possibility of exsanguinating the haemorrhage (20). Many endorse surgical resections of the cavity and removal of the fungus ball in cases with massive haemoptysis which at times is recalcitrant to embolization procedures (21).

4. CONCLUSION

The natural history of patients affected is variable. Some aspergillomas are known to undergo spontaneous lyses. Many endorse surgical resections in view of high risk of unpredictable, life-threatening hemoptysis.

Radiological finding is very important diagnostic tool in the diagnosis of PA. The characteristic appearance of an aspergilloma is one of more round masses within round or ovoid cavity, usually in the upper lobe, demarcated from the cavity wall by a crescent-shaped collection of air.
REFERENCES


instructions for the authors

All papers need to be sent to: Editorial board of the journal “Medical Archives (Med Arch).” electronically over the web site www scopemed org. Every sent article gets its number, and author(s) will be notified if their paper is accepted and what is the number of paper. Every correspondence will use that number. The paper has to be typed on a standard format (A4), leaving left margins to be at least 3 cm. All materials, including tables and references, have to be typed double-spaced, so that one page has no more than 2000 alphanumerical characters (30 lines) and total number of used words must not to be more than 5,500. Presenting author depends on its content, but usually it consists of a title page, summary, text figures, legends for pictures and pictures, type your paper in MS Word and send it on a diskette or a CD-ROM, so that the editing of your paper will be easier.

Title page. Every article has to have a title page with a title of no more than 10 words: name(s), last of the first of the author(s), name of the institution the author(s) belongs to, abstract with maximum of 45 letters (including space), footnotes(s) with acknowledgments, name of the first author or another person with whom correspondence will be maintained.

Summary. The paper needs to contain structured summary, 200 words at the most. Summary needs to hold title, full name(s) and surname(s) of the author(s) and authorship, institution, essential facts of the work, introduction, formulation of problems, purpose of work, used methods, (with specific data, if possible) and basic facts. Summary has to contain the re-view of underlined data, ideas and conclusions from text. Summary must have no quoted references. Four key words, at the most, need to be placed below the text.

Central authentic paper contains these parts: introduction, goal, methods, results, discussion and conclusion. Introduction is brief and clear review of the problem. Methods are shown, so that interested reader is able to repeat described research. Known methods don’t need to be identified, they are cited (referenced). If drugs are listed, their generic name is used, (brand name can be written in brackets). Results need to be shown clearly and logically, and their significance must be proven by statistical analysis. In discussion, results are interpreted and compared to the existing and previously published findings in the same field. Observations have to give an answer to author’s goals. References. Quoting references must be on a scale, in which they are really used. Quoting most recent literature is recommended. Only published articles, (or articles accepted for publishing), can be used as references. Not published observations and personal notifications need to be in text in brackets. Showing references must be as how they appear in the paper, i.e. as cited in table(s) or pictures are also numbered according to the quoted order. All references should be compiled at the end of the article in the Vancouver style or pubMed style (i.e. www scopemed org).

Statistical analysis. Tests used for statistical analysis need to be shown in text and in tables or pictures containing statistical analysis. Tables and pictures. Tables have to be numbered and shown by their order, so they can be under stood without having to read the paper. Every column needs to have a title, every measuring unit (SI) has to be clearly marked (i.e. preferably in footnotes below the table, in Arabic numbers or symbols). Pictures also have to be numbered as they appear in the text. drawings need to be placed on a white or tracing paper, black and white photos have to be printed on a radiant paper. Legends (e.g. next to pictures and photos), have to be written on a separate A4 format paper. All illustrations, pictures, drawings, diagrams, have to be original, and on their backs contain, illustration number, first author’s last name, abbreviated title of the paper and picture at the top. It is appreciated if author marks the place for the table or picture.

Use of abbreviations. Use of abbreviations have to be reduced to a minimum. Conventional units can be used without their definitions. Supple ment, if paper contains original data, to a statistical method or author believes, without quoting original computer program, that paper’s value will be reduced. Editorial staff will consider possibil ity of publishing mathematics/statistic analysis in extension.

Important policies. Any practice of plagiarism will not be tolerated regarding submitted articles. Non-identifiable quoted parts of the articles from other authors are known act of plagiarism if it is not cited or referencing in appropriate places in the article. Advertent practice of plagiarism will be rejected reviewing process or article submission. Author(s) may suggest or exclude peer-reviewers for their articles but Editorial Board has the right to reject their(s) opinions or suggestions according to copyright Assignment form signed by authors before reviewing process. Authors must respect guidelines and rules of ICMJE, WAME, COPE, EA SE, linked on www avicenapublisher org. All other contributors to the article’s subject who does not qualify for authorship should be listed in acknowledgement section. For all relevant information about authorship follow ICMJE guidelines.

Conflict of Interest. All authors must make a formal statement at the time of submission indicating any potential conflict of interest that might constitute an embarrassment to any of the authors if it were not to be declared and were to emerge after publi cation. Such conflict of interest comprises: a) author is not limited to, share holding in or receipt of grant or consultancy free form a company whose product features in the submitted manuscript or which manufactures a competing product. All authors must submit a statement of conflict of Interest to be published at the end of their article (conflict of Interest: NONE DECLARED).