Case Report

Spinal anaesthesia in a case of kyphoscoliosis

Deepak Mahadeo Kokane*, Pradnya Hingole

Department of Anaesthesiology, Govt. Medical College, Latur, Maharashtra, India

Received: 31 December 2014
Accepted: 14 January 2015

*Correspondence:
Dr. Deepak Mahadeo Kokane,
E-mail: kdrdeepak@gmail.com

ABSTRACT

Kyphoscoliosis is forward and lateral bending of the spine commonly affecting the dorsal and lumbar spine. Spinal deformities are likely to be associated with physiologic derangements in cardiac and pulmonary function and may cause difficulties with both tracheal intubation and regional anaesthesia. Due to problems associated with respiratory system, spinal anaesthesia is used widely, though technically difficult. We present a case of thoracolumbar kyphoscoliosis posted for cystolithotomy successfully managed with spinal anaesthesia.

Keywords: Spinal anaesthesia, Kyphoscoliosis, Cystolithotomy

INTRODUCTION

Kyphoscoliosis is a spinal deformity characterized by anterior flexion (kyphosis) and lateral curvature (scoliosis) of the vertebral column. Idiopathic kyphoscoliosis accounts for 80% of cases, commonly begins during late childhood and may progress in severity during period of rapid skeletal growth. Incidence of idiopathic kyphoscoliosis is approximately 4 per 1000 population. There may be familial predisposition to this disease, and female to male ratio is 4:1. Kyphoscoliosis may be associated with diseases of the neuromuscular system, such as poliomyelitis, cerebral palsy and muscular dystrophy and also with neurofibromatosis, Marfan’s syndrome. Restrictive lung disease and pulmonary hypertension progressing to cor pulmonale are the principle causes of death in these patients.1

Airway management and cardio-respiratory changes make general anaesthesia hazardous where as regional anaesthesia is scared with technical problems due to abnormal curvature of spine and unpredictability of level of anaesthesia.2

CASE REPORT

A 30 year old male with kyphoscoliosis and urinary bladder calculus was posted for supra-pubic cystolithotomy. Patient came with history of burning micturition and difficulty in micturition since one month. Patient had similar episode in past intermittently since one year and was managed conservatively. Patient was able to lie down on his back and was able to move unaided. There was no history of any motor or sensory symptoms or any bowel disturbances. On examination general condition was moderate with moderate build and poor nourishment. Patient was alert and cooperative. His airway was assessed as Mallampati class II. Investigations revealed haemoglobin, platelet count, Blood urea, serum creatinine, liver function test, blood sugar level, ECG were normal. X-ray chest showed crowding of ribs on left side, prominent bronchovascular markings. PFT show mixed (obstructive plus restrictive) disorder. 2DEcho was normal (EF60%, mild pulmonary hypertension). Bedside PFT were done. Cough test and wheeze test was negative, maximum laryngeal height was 3.5 cm, forced expiratory time was 3 sec, breath holding
time was 32 sec, matchstick test can blow off candle at 22 cm distance.

The risk of anaesthetic technique (difficult spinal anaesthesia and complications like partial block, failed spinal, high spinal, general anaesthesia and postoperative intensive care) was explained to patient and his care takers and the patient was accepted for anaesthesia under ASA grade III physical status with written informed consent.

Patient was shifted to operation theatre and intravenous access was obtained with 18G IV canula, patient was preloaded with 500 ml ringer lactate while pulseoximeter, NIBP and ECG monitors were connected. Difficult intubation cart including LMA, bougie, fibreoptic bronchoscope, video laryngoscope were kept ready. Patient was prepared for regional block (subarachnoid block). To palpate the spine itself was very difficult. Intervertebral space was identified by tracing the spine from upwards. Spinal anaesthesia was given with 25 G Quincke spinal needle in L1-L2 intervertebral disc space in left lateral position by injecting 1 ml of 5% lignocaine. Then patient was given supine position. Only left sided analgesia was achieved, no effect was seen on right side of body. After waiting for 15 min, patient was given right lateral position and again 1 ml of 5% lignocaine was injected. After that analgesia was seen on right side of body. Sensory block was achieved up to T6 & surgery was started. Hemodynamic parameters & saturation were monitored and maintained within normal limits.

Postoperative pain relief was given by injection diclofenac 75 mg intramuscular; patient was monitored and shifted to the ward later. Placement of spinal needle is difficult in patient with severe thoracolumbar kyphoscoliosis due to ossification of interspinous ligaments and bony bridges.

![Figure 1: Photograph of patient with kyphoscoliosis in supine position.](image1)

**DISCUSSION**

Kyphosis is an exaggerated anterior flexion of spine resulting in round or hunch back appearance.³ Causes of thoracic and thoracolumbar kyphosis are osteoporosis, Scheuermann’s disease, post traumatic kyphosis, post infection kyphosis, tumours, ankylosing spondylitis, paralytic kyphosis etc. Kyphosis is usually associated scoliosis.⁴ Scoliosis is derived from the Greek word meaning ‘crooked’. Patients with scoliosis suffer from restrictive lung disease which decreases vital capacity, functional residual capacity, tidal volume, and increases respiratory rate.⁵ Exercise tolerance tests, pulmonary function test and arterial blood gas analysis helps to determine the severity of respiratory impairment. The compliance of the lung decreases with increase in work of breathing. Tidal volume, vital capacity and total lung capacity are reduced in PFT. Chronic hypoxemia results in cor pulmonale. Echocardiography shows pulmonary hypertension and right ventricular hypertrophy. Incidence of pulmonary infection is high due to poor cough reflex.¹ The severity of pulmonary impairment depends on the degree of the Cobb’s angle, the number of vertebrae involved, and the cephalad location of the curvature. The severity of compression is directly related to the degree of kyphoscoliosis angulations and is determined by measuring Cobb’s angle which is defined as the angle between the perpendicular of the lines drawn parallel to the upper border of the highest and lower border of the vertebrae. If this angle is 40° the cardio pulmonary function frequently decreases and if 100° it significantly decreases. In severe cases, displacement with rotation of the trachea and main stem bronchi may also be noted, which could cause problems during intubation for general anesthesia.²

The main handicap of regional anaesthesia is decreased success rate due to unsuccessful insertions, multiple
Preparations for emergency airway must always be made beforehand to avoid any mishap. The success of the procedure here depended on the co-operation of the patient, surgeon and a good preparation of the patient and well prepared anaesthesia team.

CONCLUSION

Subarachnoid block with a proper planning with meticulous approach can be a useful technique in patients with thoracolumbar kyphoscoliosis with normal coagulation status with efforts towards maintaining airway will result in successful outcome.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES


DOI: 10.5455/2349-3933.ijam20150217