Variation of axillopectoral muscle and surgical importance: a case report

Musculus axillopectoralis'in varyasyonu ve cerrahi önemi: bir vaka raporu

Mahmut Cay, Songul Cuglan, Deniz Senol, Davut Ozbag, Evren Kose

İnönü University, Faculty of Medicine, Department of Anatomy, Malatya, Turkey

Abstract

M. axillopectoralis (MAP) has been examined under different names and variations in different studies. In routinely conducted dissection studies, an arch holding onto great pectoral muscle originating from latissimus dorsi muscle was detected in the left fossa axillaris of a male cadaver aged 35-40. It was determined that the end branches of a. axillaris, v. axillaris, and plexus brachialis existing in that area passed through the underneath of that arch. MAP has a clinical and morphological importance for those surgeons that are to make surgical interventions in the fossa axillaris area. Thus, surgeons are required to consider the probability of such muscle structures in this area.

Keywords: Fossa Axillaris; Variation; Latissimus Dorsi Muscle; MAP; Cadaver.

Adresse sollicitation/İletişim

Deniz Senol
İnönü University, Faculty of Medicine, Department of Anatomy, Malatya, Turkey
E-mail: deniz.senol@inonu.edu.tr

How to cite this article/Atıf için

INTRODUCTION

Latissimus dorsi muscle is a platy, wide, and fine muscle that covers the lower half of the thoracic region and the whole lumbar region (1). This muscle, through fascia thoracolumbalis, starts from the 6th to 12th thoracic vertebrae, the processus spinosus of all lumbar and sacral vertebrae, the exterior medial part crista iliaca, the angulus inferior of scapula, and the back side of the last four costas. The point of termination is the sulcus intertubercularis of the humerus (2). Latissimus dorsi muscle is a muscle that is frequently used in reconstructive and plastic surgery such as cardiomyopathy and mastectomy as a flap (3).

Among the structures of man’s axillary components that have a variant structure, the most well-known one is a muscular or fibro-muscular slip which extends from the latissimus dorsi muscle to the tendons, muscles or fasciae of the superior part of the humerus (4).

There are several terminological varieties. This variant can be called “Achselbogen”, “musculus axillopectoralis (MAP)”, “axillary arch”, “Langer’s axillary arch”, or “muscularaxillary arch” (5-9). The name “MAP” is used in the present study.

MAP was defined by Ramsay first in 1795. Its complete true definition was made by Langer in 1846. After that, the muscle was called “Langer’s axillary arch” (9). This variation was named as MAP in 1977 by Sachatello. Though it differs from community to community, rate of incidence of m. axillopectoralis or Langer’s arch in the general population is 7% (10). Langer’s arch refers to a situation where certain fibers of latissimus dorsi muscle have an abnormal course through axilla and end in great pectoral muscle. This variation may contain more than one band, and the points of termination may differ (5, 6, 11).

It is known that variations of MAP occupy an important place for physicians and surgeons that carry out axillary examination or surgery. Crossing the artery and vein axillaris just above the area, MAP may widely be chosen for the practice of a ligature. Also, it can cause surgeons make mistakes in the course of the operation.

CASE REPORT

Unilateral m. axillopectoralis extending from latissimus dorsi muscle to great pectoral muscle as a single band in the left fossa axillaris was detected during the dissection of a male a cadaver aged 35-40 in the Anatomy Dissection Lab of İnönü University Faculty of Medicine Department of Anatomy. It had a length of 8.05 cm and a maximum width of 0.93. The end points of plexus brachialis, a. axillaris and v. axillaris passed below MAP (Figure 1). No variation was observed in the right fossa axillaris.

DISCUSSION

Fossa axillaris is a complex structure that contains important neurovascular structures and lymph nodes. The most frequently observed variation in this area is MAP (9, 12).

MAP may lead to complications such as thoracic outlet syndrome and deep venous thrombosis by extending on neurovascular structures like an arch. Therefore, it is clinically important to know that MAP exists in this area (13-17). Testut (1884) classified these differences into two: complete and incomplete (6). In the complete form, it ends in the tendon of great pectoral muscle rather than on the humerus. In the incomplete form, MAP may start from latissimus dorsi muscle and extend to fascia axilla, m. biceps brachii, m. coracobrachialis, lesser pectoral muscle, sulcus intertubercularis’ distal end or proc. coracoideus (11, 18). The complete form of the variation was observed in this case presentation. Though MAP was observed unilateral in this case, it is generally reported to be bilateral (9, 13, 18). This variation is reported to be observed on the left part in the case studies in the literature, and this is true for our case, too (11, 16, 17, 19-21).

Turgut et al. conducted a study on 26 cadavers and found one MAP variation. This muscle was found to have a length of 9.6 cm and a width of 1.4 cm (11). In their case presentation, Yüksel et al. reported a MAP having a length of 11 cm and a width of 1 cm (20). The values found in our case are similar to the cases in the literature.

The variation was found to have different frequencies in different races. Table 1 shows the frequency of variation based on populations.
Turgut et al. stated that MAP can be innervated from different nerves, and this innervation can be made by n. pectoralis minor due to its embryological development. It is also reported that this muscle can be innervated from the perforating branches of n. thoracodorsalis, n. intercostalis secunda or n. intercostalis tercia (9, 13). In the present study, the nerve innervating could not be detected.

Table 1. The incidence of the MAP reported in the literature

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>No. of arches</th>
<th>No. of subjects</th>
<th>%</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarys (1996)</td>
<td>16</td>
<td>183</td>
<td>8,7</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Georgiev (2006)</td>
<td>2</td>
<td>56</td>
<td>3,6</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Kasai (1977)</td>
<td>10</td>
<td>88</td>
<td>11,4</td>
<td>Japanese</td>
</tr>
<tr>
<td>Kalaycioglu (1998)</td>
<td>1</td>
<td>60</td>
<td>1,7</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Merida-Velasco (2003)</td>
<td>3</td>
<td>32</td>
<td>9,4</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Miguel (2001)</td>
<td>3</td>
<td>50</td>
<td>6</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Schramm (1984)</td>
<td>9</td>
<td>60</td>
<td>15</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Serpell and Baum (1991)</td>
<td>4</td>
<td>2000</td>
<td>0,2</td>
<td>Caucasian</td>
</tr>
<tr>
<td>Takaufuji (1991)</td>
<td>3</td>
<td>47</td>
<td>6,4</td>
<td>Japanese</td>
</tr>
<tr>
<td>Turgut (2005)</td>
<td>1</td>
<td>26</td>
<td>3,8</td>
<td>Caucasian</td>
</tr>
</tbody>
</table>

CONCLUSIONS

This study presents a muscular variation in the axilla. Information on this variation can bring benefits to operators for the use of latissimus dorsi muscle in a lot of plastic and reconstructive surgeries.

Conflict of interests

The authors hereby declare that they have no competing interests.

REFERENCES