Comparison of PTEN expression in Hashimoto thyroiditis, follicular adenoma, papillary and follicular carcinomas

Saadet Alan, Nese Karadag Soylu

Inonu University, Faculty of Medicine, Department of Medical Pathology, Malatya, Turkey

Copyright © 2019 by authors and Annals of Medical Research Publishing Inc.

Abstract

Aim: Thyroid malignancies account for approximately 3% of all human cancers. A loss or reduction in the expression of a tumor suppressor gene, PTEN has been observed in approximately 40% of thyroid tumors. This change in PTEN expression has been shown to be due to PTEN mutation or deletion. The aim of this study was to compare the PTEN expression among Hashimoto thyroiditis, follicular adenomas and malignant tumors originating from thyroid follicle epithelial cells.

Material and Methods: 101 cases of thyroid carcinoma were studied and classified into differentiated types including 15 cases of follicular thyroid carcinomas (FTC), 28 cases of papillary thyroid carcinomas (PTC), 29 cases of follicular adenomas (FA) and 29 cases of Hashimoto thyroiditis (HT). PTEN expression in all the cases were analyzed immunohistochemically.

Results: The cytoplasmic and nuclear staining intensity in Hashimoto thyroiditis showed minimal loss of PTEN expression. The nuclear and cytoplasmic staining intensity and percentage in Hashimoto thyroiditis and follicular adenomas were similar. In most of the papillary carcinoma samples, PTEN expression was lost as deduced from cytoplasmic and nuclear staining intensity. While the loss of nuclear PTEN expression was the highest in follicular carcinoma, the cytoplasmic loss was minimal.

Conclusions: Loss of PTEN expression is more pronounced in papillary and follicular carcinomas than benign lesions. PTEN has been shown to play an oncogenic role in papillary and follicular carcinoma. PTEN expression loss can be used as a new biomarker in PTC and FTC cases.

Keywords: Hashimoto Thyroiditis; Follicular Adenom; Papillary Thyroid Carcinoma; Follicular Thyroid Carcinoma; PTEN.

INTRODUCTION

Thyroid cancers constitute approximately 3% of all malignant tumors. In recent years, the incidence of thyroid carcinomas is significantly increased (1,2). The majority of thyroid carcinomas (87.9%) are papillary thyroid carcinoma (PTC), less frequently follicular (FTC), medullary (MTC) and anaplastic carcinoma (ATC) (3). Diagnosis of carcinoma is made by radiological imaging and cytopathological examination after aspiration cytology. The development of multifocal carcinoma in multiple areas of the thyroid parenchyma simultaneously supports the aetiology of PTC. The only evidence-based etiologic factor in the pathogenesis of thyroid cancer is ionizing radiation (4). The association of autoimmune lymphocytic thyroiditis with PTC was demonstrated in cross-sectional studies. The relationship between PTC and HT has also been supported by recent cross-sectional studies (2,5-8). Although the process of PTC formation in HT has been described by faulty regeneration in the follicular epithelium after chronic inflammatory injury, the molecular pathogenesis remains unclear. The presence of HT correlates with multifocal cancers as reported by many studies (5,9-11).

The tumor suppressor gene PTEN, also known as MMAC1 and TEP-1, is mutated frequently in many types of cancer (12). Suppression of PTEN expression leads to progression and increased invasiveness of thyroid cancer (12-14). PTEN expression reduction in benign and malignant lesions of thyroid has been reported. There is no study comparing benign lesion/adenomas of thyroid with well-differentiated malignant follicular epithelial tumors (4). In this study, we aimed to compare the relationship between carcinogenesis and PTEN expression in papillary and follicular carcinomas and benign lesions of thyroid (Hashimoto thyroiditis, follicular adenomas). The relationship between benign and malignant lesions will
facilitate detection and discrimination in the early stages of the process, which would help with early intervention and treatment.

MATERIAL and METHODS

The pathology archive scanning was carried out in Inonu University, Faculty of Medicine, Turgut Özal Hospital, Department of Medical Pathology. A total of 101 cases with 15 follicular carcinomas, 28 papillary carcinomas, 29 follicular adenomas, and 29 Hashimoto thyroiditis were randomly selected. The Medical Ethics Committee of Inonu University approved the study.

Macroscopic features (size, location) and clinical anamnesis (age, gender) of the patients were reported. The pathological specimens retrieved from the archive have been re-evaluated. The paraffin tissue blocks for immunohistochemical staining were selected in all cases. The blocks were sectioned into 4-5 μm thickness and the streptavidin biotin peroxidase immunohistochemical staining method was performed to evaluate PTEN immunoeexpression in the tissue. The sections were treated with 3% hydrogen peroxide for 20 min to suppress endogenous peroxidase activity. The nonspecific background was blocked by serum-free protein block. Then sections were incubated with PTEN primary antibodies (Mob 369, clone 28H6 isotype IG G1, Kappa, CA) at room temperature for 1 h followed by three washings in PBS. The kit was used for detection of protein according to the manufacturer’s instructions. Mayer’s hematoxylin was used to counterstain the cells. A negative control (no primary antibody) was performed. Coverslips were mounted on glass slides using mounting media. Slides were blinded, and three random fields were digitized using a Olympus BX51 microscope attached to a digital camera.

In immunohistochemical evaluation, PTEN expression was evaluated in endothelial cells as internal positive control. Slides were evaluated by considering the prevalence of nuclear and cytoplasmic stainings. Nuclear and cytoplasmic staining density signal in thyroid were rated as strong (+++), medium (++), weak (+) and negative (−). Nuclear and cytoplasmic staining was classified under percentage of cells showing staining as 0-25% (1), 26-50% (2), 51-75% (3) and 76-100% (4). Finally, the staining density score was calculated. The degree of staining density and the percentage of staining were multiplied. These values were evaluated as 0, negative (−); 1-4, weak positive (+); 5-8, moderate positive (+++) and 9-12, strong positive (+++) as previously reported in the literature (6). Data were evaluated by using SPSS 11.0 commercial statistics program. The difference in PTEN expression among the groups was evaluated using Kruskal Wallis, Mann Whitney U and Spearman’s correlation test in all groups. p<0.05 was taken to indicate statistical significance.

RESULTS

In the study, 15 of the samples were follicular carcinomas (FTC), 28 were papillary carcinomas (PTC), 29 were follicular adenomas (FA) and 29 were Hashimoto thyroiditis (HT) (Figures 1A-B-C-D). The age of the patients ranged from 20-74 years and the mean age was 46±13 years. 78% of the cases were female (mean age 46±14), 23% were male (mean age 45±11). The distributions of age, sex, tumor size of FTC, PTC, FA, HT groups were shown in Table 1.
Table 1. Age, gender, tumor size distributions of the cases.

<table>
<thead>
<tr>
<th></th>
<th>HT (n=29)</th>
<th>FA (n=29)</th>
<th>PTC (n=28)</th>
<th>FTC (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>26-72, 44±2</td>
<td>26-74, 45±2</td>
<td>23-74, 48±3</td>
<td>20-74, 43±4</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>86%, 44±2</td>
<td>62%, 45±3</td>
<td>75%, 47±3</td>
<td>80%, 42±5</td>
</tr>
<tr>
<td>Male</td>
<td>14%, 44±9</td>
<td>38%, 46±2</td>
<td>25%, 53±5</td>
<td>20%, 50±3</td>
</tr>
<tr>
<td>Tumor size (months±Std. Error of Mean)</td>
<td>1.2-12 (± 0.4)a</td>
<td>0.3-11.5 (1.9± 0.4)b</td>
<td>1.5-8.3 (3.9±0.5)a</td>
<td></td>
</tr>
</tbody>
</table>

The tumor size of PTC is significantly smaller than that of FTC, FA tumor groups (p<0.001). There was no correlation between tumor size, gender and age of FTC, PTC and FA groups (r <1). In our study, when all of the cases were examined together, the tumors were localized in 47.2% of cases in the right lobe, in 38.9% of them in the left lobe, in 4.2% of them in isthmus, in 9.7% of them in right+left+isthmus lobe. Hashimoto thyroiditis was present in all of the cases (Figure 2A). In comparison to other groups in terms of nuclear staining density, it was observed that staining was stronger in Hashimoto thyroiditis group (p<0.001). In 5 of these cases, cytoplasmic staining was also observed. In Hashimoto thyroiditis, there was a minimal loss of expression as assessed by cytoplasmic density. The nuclear staining was detected in 19 cases; cytoplasmic staining in 3 cases; and both nuclear and cytoplasmic stainings were detected in 6 cases of follicular adenomas. In follicular adenoma, more moderate nuclear staining intensity was observed (Figure 2B).

In comparison to other groups in terms of nuclear staining density, it was observed that staining was stronger in Hashimoto thyroiditis group (p<0.001). In 5 of these cases, cytoplasmic staining was also observed. In Hashimoto thyroiditis, there was a minimal loss of expression as assessed by cytoplasmic density.
DISCUSSION

Papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) are classified as well-differentiated thyroid cancers accounting for approximately 95% of all thyroid cancers. They generally have a favorable prognosis (2, 15). Şamdancı et al. reported that the incidence of PTC has been detected in New York, USA, 10.4%; Tikva, Israel, 5%, Milan, Italy, 18.5%, Saudi Arabia, 8.6%, Pakistan, 3.1% and Malatya, 21% (16).

In our study, the mean age of the patients was 46±13 years. 78% of the cases were female (mean age 46±14), 23% were male (mean age 45±11). Lin et al. reported that the mean age of patients with 6219 thyroid nodules was 49.7±13.6 (17). In a study of 14,545 patients with papillary carcinoma by Podnos et al. the mean age of the patients was 45 years (18). Fujimoto et al. found as 51 years in women and 41 years in men mean age of the patients in PK cases consisting of 363 patients (19). Corapçoğlu et al. in their study on 44 patients with thyroid papillary microcarcinoma (PMC) was reported the average age as 49 (range 20-71) (20). The results of our study are consistent with the literature (21,22). In our study, there were 15 PMC cases and the smallest tumor size was measured as 0.3 cm. Among the follicular carcinoma, papillary carcinoma and follicular adenoma cases, the largest tumor size was 12 cm and the smallest tumor size was 0.3 cm (average tumor size of 3.2±0.3 cm). There was a statistically significant difference in the tumor diameter of papillary carcinoma group as compared to other groups (p <0.001) (Table 1). No correlation was reported between age and gender with tumor diameter in the literature. In our study, there was no relationship between and age and gender with tumor diameter. Corapçoğlu et al. reported that tumor was localized in the 72% of right lobe, 24% of left lobe and 4% of isthmus in the thyroid PMC patients (20). While the tumor was more localized in the left lobes in patients with follicular carcinoma, it was more localized in the right lobes in patients with papillary carcinoma and follicular adenomas.

PI3K/Akt signaling pathway activates chemokine receptors and promotes leukocyte migration. It is effective in maintaining the balance between cell survival and apoptosis. PI3K inhibitor, PTEN is expressed in normal thyroid follicular epithelial cells. Hashimoto is also expressed in thyrocyte affected thyroiditis, but is suppressed in PTC transformed epithelial cells (4). The loss or reduction of PTEN expression is observed in thyroid neoplasms. Decreased PTEN expression was reported in about 40% of thyroid tumors (23-25). PTEN expression is decreased in carcinomas with loss of differentiation. Defective PTEN protein expression observed in thyroid cancers is often not due to mutations in the PTEN gene.
The decrease in PTEN expression is due to the decrease in protein and mRNA levels at the transcriptional level of the PTEN gene (24).

PTEN protein expression has been reported to be generally localized in the nucleus and rarely in the cytoplasm of thyrocytes (25). Oliver et al. showed that nuclear PTEN (6H2.1 monoclonal antibody) immunostaining in thyroid carcinomas is weaker than normal thyroid follicle cells and follicular adenomas (24). The nuclear expression in benign thyroid tumors was relatively weaker than normal thyroid follicle cells. A study reported that follicular carcinomas have stronger PTEN expression than papillary carcinomas and undifferentiated carcinomas (24).

Oliver et al. has shown strong PTEN expression in normal thyroid epithelium (24). The staining was more nuclear and less cytoplasmic. In benign thyroid tumors, a weaker nuclear expression than normal follicular cells was observed, cytoplasmic staining remained unchanged. In contrast, nuclear and cytoplasmic PTEN immunexpression decreased in thyroid carcinomas. The decrease in nuclear staining density is more pronounced than the decrease in cytoplasmic density, especially in FTC and PTC. The decrease in cytoplasmic PTEN immunoreactivity in the transition from normal cells to differentiated and undifferentiated tumors show the inactivation of PTEN in thyroid tumorigenesis. The decrease in PTEN expression results in a reduction of apoptosis and cell-cell adhesion control (25-28).

In our study, it was observed that the loss of PTEN expression in the papillary carcinoma group was the highest in terms of nuclear and cytoplasmic density. In Hashimoto thyroiditis, the loss of expression in terms of nuclear and cytoplasmic density was minimal. While loss of PTEN expression is the highest in follicular carcinoma in terms of nuclear prevalence, the loss of expression is minimal in terms of cytoplasmic prevalence. The prevalence and intensity of nuclear and cytoplasmic staining were similar in follicular adenomas and Hashimoto thyroiditis. Loss of PTEN expression is more prominent in follicular and papillary carcinomas compared to other benign lesions.

Follicular carcinoma, papillary carcinoma, and follicular adenoma were mostly seen in moderate nuclear staining intensity. According to other groups, Hashimoto’s thyroiditis has a stronger intensity of nuclear staining. Papillary carcinoma, follicular adenoma, and Hashimoto’s thyroiditis show widespread nuclear staining. The prevalence of nuclear staining is weaker in follicular carcinoma cases. When cytoplasmic density and prevalence of all groups were compared, no significant difference was found.

CONCLUSION

Loss of PTEN expression is more pronounced in papillary and follicular carcinomas than benign lesions. PTEN has been shown to play an oncogenic role in papillary and follicular carcinoma. PTEN expression loss can be used as a new biomarker in PTC and FTC cases.

REFERENCES

16. Şamdancı E, Şahin N, Aydin NE. Histopathologic subtypes of surgically resected papillary thyroid carcinomas in Malatya region. HYPERLINK "http://www.totmedergisi.org/archive.php" \\
20. Corapcioğlu D, Sak SD, Delibası T, et al. Papillary microcarcinomas of the thyroid gland and immunohistochemical analysis of