A comparative study of autonomic function tests in normotensive premenopausal and postmenopausal women

Prema K Joshi, Pranjali S Shinde

Department of Physiology, ACPM Medical College, Dhule, Maharashtra, India.

Correspondence to: Pranjali S Shinde, E-mail: drpranjaliss@gmail.com

Received August 6, 2015. Accepted August 13, 2015

ABSTRACT

Background: Premenopause is a term that encompasses the entire reproductive period up to final menstrual period, whereas menopause is the permanent cessation of menstruation. Menopause is “burning out of ovaries.” After menopause, the primordial follicles become atretic; hence, the ovaries fail completely to produce estrogen. The presence of estrogen receptors in the heart, vascular smooth muscles, and autonomic brainstem centers establishes a probable participation in the regulation of cardiovascular system. Aims and Objective: To compare the autonomic function tests in premenopausal and postmenopausal women. Materials and Methods: The autonomic function tests in 60 premenopausal women (25–45 years) and 60 postmenopausal women (45–60 years) were compared. The following parameters were studied: (i) body mass index (BMI); (ii) waist–hip ratio (WHR); (iii) Parasympathetic function tests—(a) heart rate response to postural change (30:15 ratio), (b) heart rate variation during deep breathing, and (c) Valsalva maneuver test; and iv) sympathetic function tests—(a) orthostatic tolerance test, (b) sustained isometric handgrip test, and (c) cold pressor test. Result: (1) BMI and WHR significantly increased in the postmenopausal women when compared with the premenopausal women. (2) The 30:15 ratio significantly decreased in the postmenopausal women when compared with the premenopausal women. (3) All the sympathetic function test results significantly increased in the postmenopausal women when compared with premenopausal women. Conclusion: This finding showed an increased tendency of obesity and autonomic imbalance with sympathetic overactivity in the postmenopausal women when compared with the premenopausal women.

KEY WORDS: Autonomic Function; Postmenopausal Women; Premenopausal Women

INTRODUCTION

Menopause is “burning out of ovaries.” After menopause, the primordial follicles become atretic; hence, the ovaries fail completely to produce estrogen.[1] Premenopause is a term that encompasses the entire reproductive period up to final menstrual period, whereas menopause is the permanent cessation of menstruation.[2]

There is a combined contribution of obesity, physical inactivity, and changed estrogen metabolism in the disease risk of postmenopausal women.[3] The high incidence of ischemic heart disease after menopause suggests a close association between ovarian hormone levels and cardiovascular system.[4] Autonomic control of heart plays an important role in the cardiac mortality.[5]

The changed sympathovagal activity poses an unfavourable effect on health.[3] Hence, there is a need to understand the

National Journal of Physiology, Pharmacy and Pharmacology Online 2015. © 2015 Pranjali S. Shinde. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.
autonomic changes that take place after the cessation of estrogen secretion, i.e., menopause. So, the objective of this study was to compare the autonomic function tests in premenopausal women in the age group of 25–45 years and postmenopausal women in the age group of 45–60 years.

Early detection of subclinical autonomic dysfunction in postmenopausal women, therefore, will improve the quality of life by proper medication and lifestyle modification.

MATERIAL AND METHODS

This case–control study was done in 60 premenopausal women and 60 postmenopausal women. The subjects were randomly selected from general population around the hospital area. The mean systolic and diastolic blood pressures of the subjects were \(110 \pm 7.2\) and \(78 \pm 2.1\) mm Hg, respectively.

Group 1: Cases (Postmenopausal Women)

The inclusion criteria were postmenopausal women of age 45–60 years with natural cessation of menstruation for 2 years. The exclusion criteria were women on hormone replacement therapy or any other drug that alters cardiovascular function or endocrine function; women with history of hypertension, diabetes, or any systemic or metabolic disorder; women with any history of addiction; trained athlete, or women performing any kind of strenuous exercise, yoga, or meditation.

Group 2: Control (Premenopausal Women)

Women of age 25–45 years with regular menstrual cycle were selected and examined in follicular phase when the hormonal variations are not influenced by progesterone.\(^5\)

The exclusion criteria were women on oral contraceptive pills or any medication that alters cardiovascular function or endocrine function; lactating and pregnant women; women within 2 years of postpartum; trained athlete, or women performing any kind of strenuous exercise, yoga, or meditation.

Procedure

Anthropometry\(^3\)

a. Body weight (kg): A digital weighing scale was used to measure body weight with an accuracy of \(\pm 100\) g. Subjects were weighed without their shoes.

b. Height (m): The standing body height was measured without shoes to the nearest 0.5 cm with the use of height stand with shoulders in relaxed position and arms hanging freely.

c. Body mass index (BMI) (kg/m\(^2\)): BMI was calculated as body weight in kilograms divided by square of body height in meters.

d. Waist/hip ratio (WHR): Waist circumference was measured at the level of iliac crest and hip circumference at the fullest point around buttocks. Waist circumference was divided by hip circumference in order to calculate the WHR. WHR > 0.9 were considered obese subjects.

Determination of resting blood pressure. The blood pressure was measured in lying down position after an initial rest of 15 min.\(^3\) The cuff was placed on subjects right arm, at the heart level, and the blood pressure was measured by palpatory method. The systolic and diastolic blood pressures were recorded by auscultatory method. The systolic blood pressure was defined as the appearance of first Korotkoff sound and diastolic blood pressure as disappearance of phase 5 Korotkoff sound. Two readings were taken at an interval of 30 s. Thereafter, the mean of two readings was taken as the normal blood pressure.

Autonomic function tests. The subjects were made to rest for 15 min in the supine position. The resting time given to subjects in between the two tests was 5 to 10 min.

Parasympathetic function tests

- Heart rate response to postural change (30:15 ratio)\(^3\). After a complete rest of 15 min in the supine position, the ECG recording was started. The subject was instructed to stand erect from the supine position as quickly as possible (within 3 s) with continuous ECG recording for at least 30 s. The ratio of the longest RR around the 30th beat after standing to the shortest RR interval around the 15th beat after standing were calculated for result of 30:15 ratio: normal, \(\geq 1.04\); abnormal, \(< 1.00\).

- Heart rate variation during deep breathing\(^3\). The subject was instructed to take deep inspiration over 5 s and followed by expiration over next 5 s, completing six respiratory cycles in 1 min (six cycles were repeated in 1 min in this test). The mean of the minimum RR intervals in the six inspiratory cycles was calculated and heart rate determined. In addition, the mean of the maximum RR interval in the six expiratory cycles of the same tracing were calculated for heart rate during expiration. The difference of the heart rate between the maximum in the inspiratory cycle and the minimum in the expiratory cycles was calculated and was used as result of the test: normal \(> 15\) beats/min.

- Valsalva maneuver test\(^3\). The subject was instructed to exhale forcefully through the mouth piece of a modified mercurial sphygmomanometer and to maintain pressure in the manometer up to 40 mm Hg for 15 s. ECG recordings were taken during the maneuver and continued for about 30 s after the performance. The ratio of the longest RR interval after blowing to the shortest RR interval during blowing was calculated: normal \(\geq 1.21\); abnormal \(< 1.1\).

Table 1: Comparison of BMI (kg/m\(^2\)) between premenopausal and postmenopausal women.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Group I (cases)</th>
<th>Group II (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>27.4</td>
<td>21.9</td>
</tr>
<tr>
<td>± SD</td>
<td>4.47</td>
<td>1.55</td>
</tr>
<tr>
<td>Z</td>
<td>4.95</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>Highly significant</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

The BMI and WHR statistically significantly increased in the postmenopausal women in comparison with the premenopausal women. There was a statistically significant decrease in 30:15 ratio, whereas the results of deep breathing test and Valsalva maneuver test did not show any significant change in the postmenopausal women when compared with the premenopausal women. The sympathetic function test results significantly increased in the postmenopausal women when compared with the premenopausal women.

DISCUSSION

In this study, there was a statistically significant increase in BMI in the postmenopausal women when compared with the premenopausal women [Table 1]. Similar significant increase in BMI in the postmenopausal women has been reported by Chaudhuri et al.[3] Estrogen acts on pro-opiomelanocortin (POMC) neurons, regulate their cellular activity through estrogen receptor (ER)β, and suppress food intake.[8] Moreover, estrogen levels are closely associated with leptin levels. Leptin modulates energy balance in the hypothalamus by exerting an anabolic effect and exhibiting a lipolytic effect. Estrogen increases the leptin sensitivity by controlling the expression of leptin-specific receptors. In addition, resistin is a hormone that is produced by adipocytes.[8] After menopause, the ovaries fail completely to produce estrogen,[2] resulting into a deregulation of energy metabolism that may have induced an elevation in the total adiposity in the postmenopausal women.[3]

Because WHR is used to indicate the abdominal fat accumulation[9] and is found to be more predictive than BMI,[3] we compared the WHR of the postmenopausal women with the premenopausal women [Table 2]. There was a statistically significant increase in WHR in the postmenopausal women when compared with the premenopausal women (WHR > 0.9 in women is considered abnormal).[3] Estrogen promotes and maintains the characteristic female type of fat distribution that features the build up of adipose tissue, particularly in the subcutaneous fat depot with only diffuse and small amounts of subcutaneous fat depot in the postmenopausal women.[3] Hence, in postmenopausal women, the decline in estrogen results into increase in the abdominal fat, leading to increased WHR.

Table 2: Comparison of WHR between premenopausal and postmenopausal women.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Group I (cases)</th>
<th>Group II (control)</th>
<th>Z</th>
<th>P</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.95</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>± SD</td>
<td>0.12</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>5.33</td>
<td>0.01</td>
<td></td>
<td></td>
<td>Highly significant</td>
</tr>
</tbody>
</table>

Table 3: Comparison of parameters of parasympathetic function tests between premenopausal and postmenopausal women.

<table>
<thead>
<tr>
<th>Tests</th>
<th>Group I (cases)</th>
<th>Group II (control)</th>
<th>Z</th>
<th>P</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>30:15 ratio</td>
<td>0.99</td>
<td>1.23</td>
<td>54.29</td>
<td><0.01</td>
<td>Significant</td>
</tr>
<tr>
<td>Deep breathing test</td>
<td>17</td>
<td>16.3</td>
<td>1.92</td>
<td>>0.01</td>
<td>Not significant</td>
</tr>
<tr>
<td>Valsalva maneuver test</td>
<td>1.29</td>
<td>1.27</td>
<td>1.82</td>
<td>>0.01</td>
<td>Not significant</td>
</tr>
</tbody>
</table>
According to our study, there was a statistically significant decrease in the 30:15 ratio, whereas the results of deep breathing test and valsala maneuver test did not show any significant changes in the postmenopausal women when compared with the premenopausal women [Table 3]. There was a statistically significant increase in the sympathetic function in the postmenopausal women when compared with the premenopausal women [Table 4].

Human obesity is featured by noticeable sympathetic activation. In addition, a raise from the usual body weight of an individual is associated with a decrease in the parasympathetic activity.[10] Tables 1 and 2 suggest that the postmenopausal women are obese when compared with the premenopausal women. This is a contributing factor for autonomic imbalance found in the postmenopausal women.

Mercuro et al.[10] showed that surgical menopause (oophorectomy) resulted in a decrease in the cardiac vagal modulation, leading to a shift toward the sympathetic activity. Saab et al. studied the cardiovascular and neuroendocrine responses to behavioral stressors in the pre- and postmenopausal women. Their result showed exaggerated cardiovascular and neuroendocrine responses in the postmenopausal women and they also linked the mechanism of these influences to estrogen and their hemodynamic effects.[11]

The physiological levels of estrogen account for an increased vagal and lower sympathetic modulation.[12] The decline in the estrogen levels shifts the autonomic balance toward the sympathetic dominance in the postmenopausal women.[5]

As suggested by some studies, estrogen binds to the membrane receptors to stimulate the nitric oxide release from the endothelium. It facilitates calcium flux and reduces the calcium sensitivity of contractile elements. Thus, estrogen promotes vasodilation.[13] Estrogen also increases β-adrenergic receptor sensitivity to catecholamines to promote vasodilation.[13]

Experimental study showed that, in ovarectomized female rats, acute and chronic administration of estrogen increases the cardiovascular baroreflex sensitivity, and this effect is blocked by the administration of ER antagonist to nucleus ambiguous.[13]

Hence, hormone alteration (decline in estrogen level) is responsible for obesity and autonomic imbalance (sympathetic overactivity) in the postmenopausal women when compared with the premenopausal women.

CONCLUSION

There is an increase in BMI and WHR and increase in the sympathetic function in the postmenopausal women when compared with the premenopausal women. This study suggests that the increased tendency of obesity and decrease in the level of estrogen from premenopausal to postmenopausal status cause shifting of autonomic balance toward sympathetic dominance.

Acknowledgments

We are extremely thankful to all the women for their kind cooperation and participation in the successful completion of our study. We also express our heartfelt thanks to Dr. S. Handergulle for her esteemed guidance.

REFERENCES

How to cite this article: Joshi PK, Shinde PS. A comparative study of autonomic function tests in normotensive premenopausal and postmenopausal women. Natl J Physiol Pharm Pharmacol 2015;5: 386–390.

Source of Support: Nil, Conflict of Interest: None declared.