This is an accepted article in press for IJMDC
The designed pdf version will be available soon.

Article Type: Original Article

Title: Epidemiological peculiarities and analysis of the incidence time series of airborne viral infections in Ukraine in 2010-2020

Running title: Epidemiological peculiarities and analysis of the incidence time series of airborne viral infections

Authors:
Nina Malysh¹, Alla Podavalenko², Victoriya Zadorozhna³, Svitlana Biryukova⁴

Affiliations:
1. Department of Infectious Diseases with Epidemiology, Sumy State University, Sumy, Ukraine.
2. Department of Hygiene, Epidemiology and Infectious Diseases, Kharkiv Postgraduate Education, Kharkiv, Ukraine.
3. SI Institute of Epidemiology and Infectious Diseases named after L.V. Gromashevsky National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.
4. Department of Clinical Immunology and Microbiology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine.

Corresponding Author:
Nina Malysh,
Department of Infectious Diseases with Epidemiology, Sumy State University, Sumy, Ukraine.
Email: malysh.ng@gmail.com
Abstract

Background: Illnesses with the aerosol mode of transmission dominate in the domain of infectious diseases. Influenced by natural, social, and biological factors, epidemiological characteristics of infectious diseases change. The present study aims at determining the peculiar modern features of the epidemiological situation regarding viral infections with the aerosol transmission in Ukraine.

Methods: Epidemiological and statistical research methods were applied. Statistical processing was conducted using standard methods of variation and correlation statistics.

Results: Influenza incidence ranged from 31.14–184.45 per 100 thousand people. Other acute respiratory viral infections went from 13685.24–18382.5. The epidemic process of measles was characterized by increasing incidence in 2018 and 2019. In Ukraine, a tendency to reduce rubella and mumps (p<0.05) was found. Median coverage of MMR-1 vaccine was 64.9 %, of MMR-2 vaccine – 71.2 %. The positive effect of immunization on the incidence of mumps and rubella has been established.

Conclusion: The study found wide prevalence of diseases with the aerosol transmission in Ukraine, variety of their clinical forms causes difficulties in combating them. The administration of two doses of the measles vaccine does not protect against this disease. The demographic situation in Ukraine may indirectly influence the intensity of the epidemic situation of viral infections with the aerosol transmission.

Keywords: Influenza, acute respiratory viral infections, SARS-CoV-2, measles, vaccination.
Introduction.

Illnesses with the aerosol mode of transmission dominate the structure of infectious diseases. The primary pathogens of other acute respiratory viral infections (ARVI) are respiratory syncytial virus, human metapneumovirus, coronavirus, enterovirus, rhinovirus, influenza, and parainfluenza viruses, adenovirus, and bocavirus [1]. Influenza affects millions of people worldwide every year, causing significant incidence and mortality. New influenza viruses cause pandemics, and seasonal viruses predetermine increased incidence in autumn and winter [2]. The respiratory syncytial virus is the main reason for children's acute lower respiratory tract infections [3]. Human metapneumovirus is the causative agent of acute respiratory infection, most often in children, immunocompromised patients, elderly people [4]. Adenoviruses usually cause mild infections of the upper and lower respiratory tracts, gastrointestinal tract, and conjunctiva. Adenovirus infections are most often met in young children with dysimmunity. Epidemics can occur in children and adults in closed collectives [5]. The emergence of SARS-CoV-2 after the coronavirus of the severe acute respiratory syndrome (SARS-CoV) in 2002 and the coronavirus of Middle Eastern respiratory syndrome (MERS-CoV) in 2012 caused the third highly pathogenic and large-scale epidemics of coronaviral infection in the XXI century. Elderly people and persons with severe chronic pathology are primarily susceptible to this infection and prone to severe consequences, which can be connected with the development of acute respiratory distress syndrome and cytokine storms [6]. Measles, rubella, and mumps also belong to the infections with the aerosol transmission. However, they are characterized by the fact that the intensity of their epidemic process is significantly controlled by immunoprophylaxis [7, 8, 9, 10].

Influenced by natural, social, and biological factors, epidemiological characteristics of infectious diseases change. That's why the objective of this research was to determine peculiar modern features of the epidemiological situation regarding viral infections with the aerosol transmission in Ukraine.

Subjects and methods

Data of branch-specific statistical reporting of the Ministry of Health of Ukraine, State Institution Public Health Center of the Ministry of Health of Ukraine, State Statistics Committee of Ukraine in 2010-2020 were used in this study. Epidemiological and statistical research methods were applied. Statistical processing was conducted using standard methods of variation and correlation statistics. Arithmetic mean value (M), median (Me), and significance point (p) were used. The results of correlation analysis were represented using Spearman’s rank correlation coefficients (r_s). If the correlation coefficient was 0, the connection between phenomena was considered absent; 0.1 to 0.29 – the connection was estimated as weak; 0.30 to
Results
Viral infections with airborne transmission continue to be of relevance for health institutions in Ukraine. In 2010-2020 influenza incidence ranged from 31.14 per 100 thousand people to 184.45. Time series are characterized by a greater tendency towards a decline in incidence (p<0.05). According to trend equation \(y = -8.757x + 1132.9 \), we have established the expected incidence of influenza in 2021–2023, namely in 2021 – 27.84 per 100 thousand people; in 2022 – 19.08; in 2023 – 10.33 (Figure 1).

![Figure 1. Influenza incidence rates](image)

It should be noted that the expected intensity of the epidemic process may change in the case of forming a new pandemic influenza strain and changes in the main demographic indicators. As it can be seen from the data of Figure 1, children’s incidence (ranged from 80.72 per 100 thousand child population to 444.16) exceeded of adults (ranged from 19.09 per 100 thousand adult population to 127.35) (p <0.05). Median (Me) incidence of children was 5.3 times higher than Me incidence of adults (Me - 32.31 per 100 thousand adult population) and amounted to 169.22 per 100 thousand child population. The highest rates were in the group of children aged 5 to 17 years old (p <0.05). In the structure of patients with influenza, the proportion of adults was 55.3 %, children – 46.7 %. The morbidity trends of children were closely related to the incidence of adults. Direct correlations were established between their incidence rates (\(r = 0.645 \), p <0.05).
The incidence of other ARVI of the upper respiratory tract in 2010–2020 ranged from 13685.24 per 100 thousand people to 18382.5. According to the trend equation \(y = -330.8x + 17899 \), we have established the expected incidence of other ARVI in 2021–2023, namely in 2021 – 13929.4 per 100 thousand people; in 2022 - 13598.6; in 2023 – 13627.8 (Figure 2).

\[y = -330.8x + 17899 \]
\[R^2 = 0.519 \]

![Graph showing incidence rates](image)

Figure 2. Other acute respiratory viral infections incidence rates

As shown be seen from the data of Figure 2, the incidence of child population (ranged from 38221.25 per 100 thousand child population to 65114.45) was higher than the rates of adults (ranged from 5980.26 per 100 thousand adult population to 36885.06). Me incidence of other children’s ARVI was 8.9 times higher than Me incidence of adults (Me – 6501.47per 100 thousand adult people) and amounted to 57720.77per 100 thousand child population. Children older than five years old suffered the most (p <0.05). Their incidence rates were the highest. No statistically significant direct correlations were found between the incidence of children and adults (\(r_s = 0.145, p <0.05 \)). During the period under study, the proportion of adults in the structure of patients with other ARVI of the upper respiratory tract was 35.6 %, children – 64.4 %. By 2020, the incidence of children exceeded the adults (p <0.05). In 2020, the situation changed dramatically. The ARVI incidence in the adult population compared to 2019 increased by 27.7 % or 1.4 times. This was due to the circulation of the new coronavirus SARS-CoV-2 in Ukraine. In the etiological structure of other ARVI in 2020, the proportion of coronaviruses SARS-CoV-2 was 18.4%. Another urgent problem for the system of health institutions in Ukraine was measles. In 2010-2020, the incidence of measles ranged from 0.08 per 100 thousand people to 133.69. According to the trend equation \(y = 7.465x-16.18 \), we have established the
expected levels of measles in 2021–2023: in 2021 -73.4 per 100 thousand people; in 2022 - 80.87; in 2023 - 88.33 (Figure 3).

As can be seen from the data of Fig. 3, the incidence of child population (ranged from 0.14 per 100 thousand child population to 442.16) exceeded one of the adults (ranged from 0.05 per 100 thousand adult population to 77.71). Me incidence of children was 10.4 times higher than Me incidence of adults (Me – 1.93 per 100 thousand adult population) and amounted to 20.11 per 100 thousand child population. In 2018 and 2019, the incidence rates of children under one year of age significantly exceeded the incidence of children of other age groups (p <0.05). Correlations were established between the incidence of children and adults ($r_s = 0.964$, p <0.05). In the age structure of patients with measles, the proportion of adults was relatively high and amounted to 40.5%. The incidence of rubella in Ukraine in 2010-2020 ranged from 0.09 per 100 thousand people to 5.05. According to the trend equation $y = −0.674x + 6.352$, we have calculated the expected incidence of rubella in 2021–2023, namely in 2021 – (−1.74) per 100 thousand people; in 2022 – (−2.41); in 2023 – (−3.08) (Figure 4).
As can be seen from the data of Fig. 4, the incidence of child population (ranged from 0.26 per 100 thousand child population to 26.49) exceeded one of the adults (ranged from 0.05 per 100 thousand adult population to 4.04). Me incidence of the child population was 8.2 times higher than Me incidence of adults (Me – 0.28 per 100 thousand adult population) and amounted to 2.3 per 100 thousand child population. Strong direct correlations were established between the child and adult population (r_s = 0.945, p <0.05). In the age structure of patients with rubella, the proportion of children was 1.3 times higher than that of adults and amounted to 55.9 %. Another disease, the incidence of which was rapidly declining, was mumps. In 2010-2020, the incidence of mumps ranged from 0.39 to 2.05 per 100 thousand people. According to the trend equation y = –0.151x + 2.120, we have established the expected incidence of rubella in 2021–2023: in 2021 – 0.31 per 100 thousand people; in 2022 - 0.16; in 2023 – 0.006 (Figure 5).
As can be seen from the data of Figure 5, the incidence of child population (ranged from 0.69 per 100 thousand child population to 8.27) exceeded one of the adults (ranged from 0.14 per 100 thousand adult population to 0.75). Me incidence of the child population was 16.6 times higher than Me incidence of adults (Me – 0.29 per 100 thousand adult population) and amounted to 4.8 per 100 thousand child population. Strong direct correlations were established between the incidence of children and adults ($r_s = 0.961, p < 0.05$). In the structure of patients with mumps, the proportion of children was 2.9 times higher than that of adults and amounted to 74.3 %. It is common knowledge that the incidence of measles, rubella, and mumps is affected by vaccination. We have analyzed the reports of the Ministry of Health of Ukraine on the implementation of preventive vaccination plans. Priorix combined vaccine (manufactured by Glaxosmithkline Biologicals S.A., Belgium), which contains live attenuated strains of measles, mumps, and rubella viruses, are used for vaccination against measles, mumps, and rubella (MMR) in Ukraine. Vaccinations are done at 12 months (MMR - 1) and 18 months (MMR - 2) of life. During the period under study, the indicators of vaccination plan performance using MMR – 1 and MMR – 2 vaccines were respectively: in 2010 – 40.7 and 56.1%, in 2011 – 55.6 and 67.0 %, in 2012 – 83.7 and 77.8 %; in 2013 – 48.6 and 55.1%, in 2014 – 38.7 and 57.0 %, in 2015 – 63.2 and 62.1 %, in 2016 – 30.2 and 45.5 %, in 2017 – 90.7 and 93.3 %, in 2018 – 89.5 and 91.0 %; in 2019 – 91.7 and 93.2 %, in 2020 – 83.3 and 83.4 %.

We have failed to establish a positive effect of the vaccination on the incidence of measles and rubella by the results of the conducted correlation analysis. The results of the statistical study have proven to be contradictory and require careful consideration. Significant
moderate direct correlations have been found between the measles incidence and the indicators of measles vaccination coverage, which contradicts the existing canons of epidemiology and indirectly shows the vaccine's ineffectiveness currently used (Table 1).

Table 1. Correlation coefficients between the incidence of measles, mumps, and rubella and the indicators of preventive vaccination coverage (r_s)

<table>
<thead>
<tr>
<th>Nosological entity</th>
<th>Vaccination (r_s)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MMR-1</td>
<td>MMR-2</td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>0.798*</td>
<td>0.666*</td>
<td></td>
</tr>
<tr>
<td>children</td>
<td>0.764*</td>
<td>0.636*</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>-0.600*</td>
<td>-0.391</td>
<td></td>
</tr>
<tr>
<td>children</td>
<td>-0.591*</td>
<td>-0.373</td>
<td></td>
</tr>
<tr>
<td>Mumps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>-0.689*</td>
<td>-0.557</td>
<td></td>
</tr>
<tr>
<td>children</td>
<td>-0.727*</td>
<td>-0.564</td>
<td></td>
</tr>
</tbody>
</table>

Note. *$p<0.05$

At the same time, reverse correlations have been established between the incidence of rubella, mumps and the level of vaccination coverage ($p<0.05$). Another factor that can influence the intensity of the epidemic process of this group of infections is the demographic situation. Number of population in Ukraine is drastically decreasing. In 2010, the population was 45782.6 thousand people. In 2014 it already amounted to 45245.9 thousand people (1.2 % less). From 2015 to 2020, the population decreased by 2.7 % and amounted to 41588.3 thousand people on January 1, 2021. The sharp population decline was due to the fact that Ukraine currently does not control 7 % of its territory or 46.2 thousand km2. The proportion of children in the population's age structure was within the range of 17.54 - 18.05 %.

An important demographic indicator is population density or the degree of the population of the territory of Ukraine. In 2010, the population density was 75.84 people per 1 km2, in 2011 – 75.53; in 2012 – 75.29; in 2013 – 75.49; in 2014 – 74.95; in 2015 – 76.69; in 2016 – 76.39; in 2017 – 76.08; in 2018 – 75.72; in 2019 – 75.31; in 2020 – 74.59. This was primarily the result of internal migration of the population from certain territories of Ukraine, namely the Crimea and parts of Donbass, to other regions of Ukraine. Natural and migratory movements of the population are essential factors forming the demographic situation. The natural population migration coefficient of Ukraine ranged from (-3.1) per 10 thousand population in 2012 to (-7.8) per 10 thousand population in 2020. Migratory movement coefficient varied from 0.2 to 1.4 per
10 thousand population. The correlations between demographic indicators and incidence were studied to determine the influence of demographic factors on the intensity of the epidemic process of viral infections with the aerosol transmission. Based on the analysis carried out, significant correlations were established between the population as a whole and child population, in particular, and the incidence of ARVI; between people, natural population movement, and the incidence of rubella and mumps (p <0.05) (Table 2).

Table 2. Correlation coefficients between the incidence of measles, rubella, and mumps and demographic indicators (r_s)

<table>
<thead>
<tr>
<th>Nosological entity</th>
<th>Demographic indicators (r_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Population</td>
</tr>
<tr>
<td>Influenza</td>
<td>−0.155</td>
</tr>
<tr>
<td>ARVI</td>
<td>0.727*</td>
</tr>
<tr>
<td>Measles</td>
<td>−0.366</td>
</tr>
<tr>
<td>Rubella</td>
<td>0.945*</td>
</tr>
<tr>
<td>Measles</td>
<td>0.973*</td>
</tr>
</tbody>
</table>

Note.* p<0.05

Discussion
Infections with aerosol transmission are widespread in the world. Seasonal flu affects millions of people every year, causing significant incidence and mortality. It has been found that one in five unvaccinated children and one in ten unvaccinated adults are infected with seasonal influenza viruses each year [2]. We have identified that influenza frequency in Ukraine was much lower. Influenza incidence ranged from 31.14–184.45 per 100 thousand people. Me incidence was 51.55 per 100 thousand people. Annually, influenza affected from 0.04 to 0.19 % of the population. At the same time, there was a tendency to reduce the incidence (p <0.05). The global burden of illnesses caused by the seasonal influenza virus among children is unknown. The situation is complicated by the fact that the symptoms of influenza and other ARVI are similar. According to the meta-analysis data, the proportion of influenza in the structure of ARVI in children ranges from 11 to 56 % [11]. It has been proven that this disease is especially dangerous for children under five years [12]. Researchers explain the high incidence of severe diseases with
the immaturity of their immune system [13]. In Ukraine, the incidence of influenza in children is also several times higher than in adults (p <0.05). Influenza virus most often causes the disease progression in a group of children five years and older. The expansion of children's contacts with their peers at this age was most likely to contribute to the viral spreading. At the same time, it should be noted that growth of incidence among adults in Ukraine will inevitably lead to an increase in the incidence of children, as we have established a significant statistical relationship between these indicators (p <0.05).

The group of other ARVI includes parainfluenza, adenoviral, respiratory syncytial, rhinovirus, and coronavirus infections. These infectious diseases are extremely common, occur in people of various ages, differ in severity and clinical manifestations depending on the degree of intoxication and the level of the respiratory lesion [1, 14, 15]. We found that in Ukraine, the incidence of other ARVI was very high, ranging from 13685.24 to 18382.5 per 100 thousand people. Me incidence was 15426.44 per 100,000 people. The risk group was children, of which Me incidence was almost nine times higher than in adults. The proportion of children in the structure of patients was 1.8 times higher than that of adults. At the same time, in 2020, the circulation of SARS-CoV-2 changed some epidemiological characteristics of other ARVI. There was a sharp increase in other ARVI in adults (compared to 2019 by 6.2 times) and a decrease in children (1.4 times). The proportion of adults in 2020 in the structure of patients with other ARVI increased to 49.5%. The measles virus is one of the most contagious among known pathogenic viruses. Before the implementation of vaccination, it caused more than 2 million deaths [16]. Under modern conditions, lethal index ranges from <0.01 % in industrialized countries to > 5 % in developing countries. The WHO has set itself the goal of overcoming the endemic transmission of the measles virus in six regions of the world by achieving high vaccination coverage levels [7]. They failed to achieve the goal. In many regions, there is an increasing incidence of measles, and children under one year (from 8 to 25 %) who have not been vaccinated constitute a significant proportion in the structure of patients [17, 18].

We found that in Ukraine, the epidemic process of measles was characterized by increasing incidence in 2012 (27.95 per 100 thousand people) and 2018 and 2019 when the incidence increased tenfold and amounted to 125.47 and 133.69 per 100 thousand people. The incidence of measles was 5.13 per 100 thousand people. The risk group was children (their incidence exceeded adults more than ten times), especially under one year of age (p <0.05). The incidence of children under 1 year of age was the highest, which indirectly showed a low level of immunity in these individuals. Mass immunization against measles has been introduced in Ukraine since the 1970s. Incidence rates have been steadily declining. Fewer and fewer mothers of newborns have post-infectious immunity. Presumably, the mother's post-vaccination
immunity does not protect the baby from getting infected with the measles virus in the first 12 months of life [19]. The established statistical relationship (p <0.05) between the incidence of children and adults shows the importance of adults as sources of infection for children.

Before the vaccination implementation, rubella was an endemic disease globally, epidemics occurred at intervals of 6-9 years, pandemics - every 10-30 years [20]. In modern conditions, rubella is still a widespread infectious disease in many regions of the world. Up to 100 000 cases of congenital rubella syndrome are registered annually [8]. At the same time, it should be noted that the incidence has decreased as a result of vaccination. In the USA, rubella was eliminated [21]. In Ukraine, there is also a tendency to reduce the incidence of rubella (p<0.05). In 2010–2020 Me incidence was 0.58 per 100 thousand people. The incidence of children ranged from 0.26–26.49 per 100 thousand people, of adults - even lower and varied from 0.05 to 4.04 per 100 thousand people.

In recent years there has been an increase in the incidence of mumps in the world [9]. Outbreaks are registered among vaccinated persons in countries with high vaccination coverage [22]. In Ukraine in 2010–2020, the incidence of mumps decreased (p<0.05). Me incidence amounted to 1.07 per 100 thousand people. Herewith, the incidence of children was 15 times higher than that of adults. The proportion of adults was 25.7 % in the structure of patients with mumps. Until recently, it was believed that if a person adheres to the MMR vaccine schedule, the immunity will be lifelong. Schedules of vaccination against measles, mumps, and rubella have been developed according to the paradigm that the vaccine protects in the same way as natural infection. Herewith, the virus serotype does not change for many decades [15]. Therefore, usually increase in the incidence of measles in the world is explained by researchers as gaps in immunization. The WHO estimates that the coverage of two MMR vaccines in the world is 67%. This level is insufficient to stop the circulation of the measles virus.

In Ukraine in 2010–2020, Me coverage of MMR-1 vaccine was 64.9 %, of MMR-2 vaccine – 71.2 %. We conducted a correlation analysis of the incidence dependence on vaccination coverage of the population subject to scheduled vaccination, and the Spearman correlation coefficient was determined. The positive effect of immunization on the incidence of mumps and rubella has been established. An inverse strong (p <0.05) and medium correlation were established between these indicators. At the same time, the paradox of a simultaneous improvement in immunization rates and increase in the incidence of measles casts doubt on whether high vaccination coverage is sufficient to prevent the disease. Mutations in the genomes of the measles virus probably allow it to avoid neutralization by antibodies induced by the vaccine. Therefore, vaccination against measles cannot be considered evidence of immunity against measles, and a positive serological test cannot guarantee protection against the disease.
The clinical picture of mumps is more benign than of measles. The researchers found that almost 70% of patients with mumps were vaccinated. According to them, sometime after vaccination, the concentration of specific antibodies to mumps virus decreases, the effectiveness of the vaccine decreases, and the risk of infection with the virus increases. In the USA, the Advisory Committee on Immunization Practices has even recommended a third dose of MMR vaccine for people at increased risk of infection to prevent emergencies [22, 23]. The reason for the lower-than-expected efficacy of the vaccine against mumps has been the subject of numerous disputes, ranging from the lowered immunity to the emergence of new virus strains that avoid the immunity generated by the vaccine [24]. Researchers confirm the efficacy of the vaccination against rubella. After the introduction of the live attenuated rubella vaccine, the incidence in the world has fallen sharply. The development of effective vaccines is facilitated by the genetic stability of the rubella virus [25]. It is well known about the indirect effect on the intensity of the epidemic process of viral infections with the aerosol transmission of the social factor.

We found that in Ukraine, both the population as a whole (9.1%) and the children population in particular (6.7%) decreased in the period under study. The migratory movement of the population changed the number and composition of the population due to its territorial distribution (maximum migratory movement coefficient was in 2012 – 1.4 per 10 thousand people.). Natural population movement changed the number and composition of the population due to births and deaths (minimum natural movement coefficient was recorded in 2020 (~7.8 per 10 thousand people.) Me population density in 2010–2020 was 75.6 per 1 km². According to the results of the correlation analysis conducted, it was found that an increase in population will indirectly influence complications of the epidemic situation with other ARVI, rubella, mumps; increase in the natural population movement coefficient - rubella and mumps, as a statistically significant direct correlation was detected between them (p <0.05).

We have discovered no impact of demographic indicators on the incidence of measles in Ukraine. However, according to the results of a comprehensive review of the literature, scientists have established that the accumulation of a contingent of people not vaccinated against measles, on the background of external and internal population migration, is the main cause of increasing measles incidence [26].

Conclusion

The study found wide prevalence of diseases with the aerosol transmission in Ukraine, variety of their clinical forms causes difficulties in combating them. Children were found more susceptible to viral infections with aerosol transmission than adults. The administration of two doses of the measles vaccine does not protect against this disease. We believe that effective measures to
influence the epidemic process of measles will be rapid anti-epidemic measures in the focus of measles, aimed primarily at isolating the patient, daily medical supervision of contact persons during the incubation period, including monitoring of persons who have been vaccinated against measles, to timely detect signs of measles. The organization of preventive and anti-epidemic measures should be carried out by specialists of the Centers for Disease Control recently established in all regions of Ukraine. Vaccination has a great influence on the intensity of the epidemic process of rubella and mumps. High levels of vaccination will help maintain low levels of morbidity. The demographic situation in the region indirectly affects the spread of viral infections with an aerosol transmission mechanism. In the case of an increase in the population and the coefficient of natural movement, we should expect an increase in cases of SARS, rubella, mumps (p <0.05). Therefore, medical institutions should have work plans and reserves of medicines in case of aggravation of the epidemiological situation.

List of Abbreviations

- ARVI: Acute respiratory viral infections.
- M: Arithmetic mean value.
- Me: Median.
- MERS-CoV: Coronavirus of Middle Eastern respiratory syndrome.
- MMR: Measles, mumps, rubella vaccine.
- Rs: Spearman’s rank correlation coefficients.
- SARS-CoV: Coronavirus of severe acute respiratory syndrome.

Conflict of interest:
The authors declare that there is no conflict of interest regarding the publication of this article.

Funding:
None.

Consent to participate:
Informed consent was obtained from all the participants.

Ethical Approval:
The board Kharkiv Medical Academy of Postgraduate Education approved the study's study date: 27 January 2021 (Please provide approval number).
References

19. Kostinov MP, Shmitko AD, Bocharova II. The level of IgG antibodies to the measles virus in the umbilical cord blood of newborns, taking into account the age of the mothers. Epidemiologiya i infektsionnyie bolezni. 2014;3:30-34. https://doi.org/10.17816/EID40816