Investigation of Extended-Spectrum Beta-Lactamase (Esbl) in Nosocomial Gram-Negative Bacterial Isolates by Different Test Methods

Filiz Orak¹, Akgun Yaman², Gulsah Seydaoglu³

¹ Special Elitpark Hospital, Corum, Turkey
² Department of Microbiology and Clinical Microbiology, Cukurova University Faculty of Medicine, Adana, Turkey
³ Department of Biostatistics, Cukurova University Faculty of Medicine, Adana, Turkey

Abstract
The aim of this study is to investigate the existence of extended-spectrum beta-lactamase (ESBL) in nosocomial Gram-negative bacteria isolates and to compare different test methods that detecting ESBL. The strains producing the largest quantities of these enzymes are Klebsiella pneumoniae (K. pneumoniae), Klebsiella spp., and Escherichia coli (E. coli).

Keywords: Extendet spectrum beta-lactamase, gram-negative bacteria, nosocomial infection

(Rec.Date: Dec 01, 2014 Accept Date: Jan 19, 2015)

Corresponding Author: Filiz Orak, Special Elitpark Hospital, Corum, Turkey
E-mail: yzorak33@hotmail.com
Introduction

The increase in morbidity and mortality due to hospital infections, coupled with the rising cost of treatment, render the application of infection control strategies necessary [1]. Resistance to antibiotics has become a major problem due to their widespread and uncontrolled use in hospitals. The issue of resistance is becoming particularly crucial in intensive care units, where high-dose parenteral broad-spectrum antibiotic use is necessary. Gram-negative bacteria play an important role in the etiology of nosocomial infections [2].

The development in gram-negative bacteria of resistance to antibiotics and the importance of the nosocomial infections of which these microorganisms are the cause are both on the rise, and treatment with existing antibiotics is becoming difficult. The production of beta-lactamase is the most important mechanism for the development of beta-lactam resistance in nosocomial Gram-negative bacteria [3]. ESBL are beta-lactamase enzymes with a broad spectrum that are found in many Enterobacteriaceae. The strains producing the largest quantities of these enzymes are Klebsiella pneumoniae (K. pneumoniae), Klebsiella spp., and Escherichia coli (E. coli). When these enzymes are produced, the microorganism enters a state in which it is highly effective at inactivating various beta-lactams [4].

ESBL production in Turkey ranges from 11% to 86%. The twofold reason for such a huge difference is socio-economic and cultural variations, and dissimilar and widespread antibiotic use among patient groups.

Several methods of detecting ESBL-producing bacteria have been propounded, including such tests as: the DDST, the CDT, the three-dimensional test, the E-test, observing the resistance to Ceftazidime, using a higher density of bacteria, disk diffusion in clavulanic acid medium, automated Vitek, and Microscan [5,6].

The aim of this study is to investigate the frequencies of extended-spectrum beta-lactamase (ESBL) nosocomial gram-negative bacterial isolates by different test methods that detecting ESBL-producing bacteria. In this study the presence of ESBL was detected with; E-test, the three synergy tests - the combined disk test (CDT), the double disk synergy test (DDST) and the disk diffusion test (DDT) and the results were compared for there sensitivity.
Materials and Methods

The study interpreted the presence of ESBL in 68 strains of E. coli and 47 strains of Klebsiella spp. responsible for hospital infections in the Cukurova University School of Medicine’s Balcali Hospital between 29 May 2003 and 30 September 2004. Bacteria from the Central Laboratory isolated as infectious agents were identified using the automated Vitek2 (BioMerieux, France) system. For all tests, the cultures were introduced into Mueller-Hinton agar and interpreted the following day.

In this study, we considered the ESBL test based on the determination of the E-test as a reference method. The results obtained from the disk diffusion test (DDT), the combined disk test (CDT), and the double-disk synergy test (DDST) were compared with those of the E-test.

In the DDT, suspected ESBL isolates were identified according to the CLSI criteria for four antibiotics (Ceftazidime zone ≤ 22mm, cefotaxime zone ≤ 27mm, ceftriaxone zone ≤ 25mm, and Aztreonam zone ≤ 27mm) and by evaluation of others (amikacin, piperacillin/tazobactam, imipenem, trimethoprim/sulfamethoxazole, amoxicillin/clavulanic acid) (CLSI) (Figure 1).

In the CDT, both Cefotaxime and Ceftazidime were tested alone and with clavulanic acid, and the result was judged to be ESBL-positive in the event of a ≥ 5mm diameter increase obtained with clavulanic acid (CLSI).

In the DDST, the presence of ESBL was evaluated by depositing amoxicillin-clavulanic acid in the middle of the plate and Ceftazidime, Cefotaxime, Ceftriaxone, and Aztreonam at 20 mm distances around the perimeter of the disks.

The E-test was deemed to be ESBL positive in the event of a Ceftazidime/Ceftazidime-clavulanate or Cefotaxime/Cefotaxime-clavulanate rate ≥8 (Figure 2).

Statistical analysis was conducted using SPSS software version 20.0 package program. A value of p < 0.05 was considered statistically significant. McNemar Test was used to compare the groups. To evaluate the tests; sensitivity, specificity, positive predictive value and negative predictive value was calculated.
Results

Of the 47 Klebsiella spp. strains in this study, ESBL production was detected in 21 (44%) using the CDT, 27 (57%) with the DDST, and 30 (63%) with the E-test ESBL strips.

The figures for the 68 E. coli strains’ test results were: CDT 34 (50%), DDST 36 (52%), and E-test strips 42 (61%).

The zone diameters with the DDT were interpreted, ESBL production was considered to be present in 73 (63%) of the total 115 strains. With the E-test, the existence of ESBL was observed in 72 of these 73 (Table 1).

Zone diameters of the disk diffusion test (DDT) (73% patients or 63% ESBL positive) were found to be similar to the E-test results.

The sensitivity of the DDT was 100% and specificity 97.7%, the sensitivity of CDT was 80.8% and specificity 100%. The sensitivity of the DDST was calculated as 88.8% and the specificity as 100% (Table 2).

The rates of resistance to third-generation cephalosporins were, for Klebsiella spp. strains: Ceftriaxone 65.9%, Cefotaxime 61.7%, Ceftazidime 53.2%, and Aztreonam 59.6%; and for E. coli strains: Ceftriaxone 61.8%, Cefotaxime 57.4%, Ceftazidime 51.4%, and Aztreonam 58.8%. The Klebsiella spp. and E. coli strains were determined to be most resistant to Trimethoprim/Sulfamethoxazole — 85.10% and 80.88%, respectively — whereas they were most susceptible, at 95.74% and 100%, to Imipenem.

Table 1: MIC values according to the E-test interpretation.

<table>
<thead>
<tr>
<th>Enzim Grubu (İzolat sayısı)</th>
<th>Seftazidim</th>
<th>Seftazidim/klavulunat</th>
<th>Sefotaksim</th>
<th>Sefotaksim/klavulunat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC50/MIC90 (µg/ml)</td>
<td>MIC50/MIC90(µg/ml)</td>
<td>MIC50/MIC90(µg/ml)</td>
<td>MIC50/MIC90(µg/ml)</td>
</tr>
<tr>
<td>ESBL pozitif(n=72)</td>
<td>> 32</td>
<td>0.094</td>
<td>>16</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>>32</td>
<td>0.380</td>
<td>>16</td>
<td>0.094</td>
</tr>
<tr>
<td>ESBL negatif(n=43)</td>
<td>< 0.50</td>
<td>0.094</td>
<td><0.25</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>>32</td>
<td>>4</td>
<td>>16</td>
<td>>1</td>
</tr>
</tbody>
</table>

www.medicinescience.org | Med-Science
Table 2: Detection of ESBL; comparison of other tests with E-test

<table>
<thead>
<tr>
<th>TESTS</th>
<th>ESBL Positive (+)</th>
<th>ESBL Negative (-)</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>NPV*</th>
<th>PPV**</th>
<th>P***</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISK E TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESBL Positive (+)</td>
<td>72</td>
<td>1</td>
<td>100.0</td>
<td>97.7</td>
<td>100.0</td>
<td>98.6</td>
<td>1.000</td>
</tr>
<tr>
<td>ESBL Negative (-)</td>
<td>0</td>
<td>42</td>
<td>80.8</td>
<td>100</td>
<td>71.6</td>
<td>100</td>
<td>0.0001</td>
</tr>
<tr>
<td>COMBINED DISK E TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESBL Positive (+)</td>
<td>55</td>
<td>0</td>
<td>88.8</td>
<td>100</td>
<td>82.6</td>
<td>100</td>
<td>0.004</td>
</tr>
<tr>
<td>ESBL Negative (-)</td>
<td>17</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOUBLE-DISK SYNERGY TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESBL Positive (+)</td>
<td>63</td>
<td>0</td>
<td>88.8</td>
<td>100</td>
<td>82.6</td>
<td>100</td>
<td>0.004</td>
</tr>
<tr>
<td>ESBL Negative (-)</td>
<td>9</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*negative predictive value **positive predictive value ***Mc Nemar test

Discussion

Studies conducted at various centers in our country report that the rate of nosocomial infections is between 2.4% and 11.8%, while the incidence of the Gram-negative bacteria that cause these infections is 40.8%. Köseoglu Ö, Gür D. And Akova M. in a study at the University of Hacettepe, identified E. coli (33%) and Klebsiella spp. (22.1%) as the most common among such microorganisms in patients with bacteremia [7].
B.S. Kocazeybek and Arabaci Ü. found E. coli (31%) and K. pneumonia (22%) to be the causative agents in the nosocomial Gram-negative bacteria isolated from the intensive care units of four separate hospitals. The same study found no significant difference between ESBL-positive and -negative isolates in terms of the sensitivity to Imipenem, Amikacin, and Ciprofloxacin [8].

The Klebsiella spp. and E. coli strains in our study were determined to be most resistant to Trimethoprim/Sulfamethoxazole — 85.10% and 80.88%, respectively — whereas they were most susceptible, at 95.74% and 100%, to Imipenem.

In our study, we found that both ESBL-positive and -negative isolates were susceptible to Imipenem, and that this was due to the occurrence of different mechanisms of resistance to carbapenems. G. Sener and A. Yüce, in their study concerning strains of K. pneumoniae, found that while it had an ESBL production rate of 39%, it was 100% sensitive to Imipenem and Meropenem [9].

B.S. Kocazeybek and U. Arabaci used the E-test method in their study to identify the inducible beta-lactamase (IBL) using the ESBL double disk test. They discovered that Imipenem and Meropenem had sensitivities of 89.7% and 95.1%, respectively. They found slightly lower carbapenem activity in IBL-producing strains [8].

ESBLs are typically encoded in large plasmids of 80-300 KB and inactivate oxyimino-cephalosporins including penicillins and first-generation cephalosporins, as well as such broad-spectrum antibiotics as Cefotaxime, Ceftazidime, and Aztreonam10. However, in many cases these plasmids carry other resistance genes. For this reason, resistance to aminoglycosides, Trimethoprim/Sulfamethoxazole, and tetracycline in bacteria that have ESBL is normal [8,10-13]. In our study, we connect the development of resistance against Trimethoprim/Sulfamethoxazole to the frequent use of this drug in our hospital. In fact, prior use of Ciprofloxacin and/or Trimethoprim/Sulfamethoxazole was shown to be one of the independent factors in the occurrence of the colonization of multidrug-resistant strains of Klebsiella spp. and E. coli in 24 patients in a nursing home [14].
In Malaysia, the E-test was used to determine the existence of ESBL. The rates in E. coli and Klebsiella spp. were 36.7-38% and 5.6-7.0%, respectively. The same strains were found to be susceptible to Cefepime and Imipenem [15].

In a study performed in Bangladesh using DDST, the rates of ESBL in E. coli and K. pneumoniae were determined to be 43.2% and 39.5%, respectively [16].

From the point of view of being able to identify ESBL, the E-test and DDST were seen to have high sensitivity (98.2%) when taken as a reference test according to CLSI criteria. When we compared the four tests, 18 strains found to be negative with the combined disk test, nine strains with the E-test, and 18 with the DDST tested positive with the DDT. This suggests false positive or false negative results.

In England a study similar to ours was done using the MAST DD test (MAST Laboratories LTD. uses only two discs), the DDST, and the E-test. The sensitivity of the E-test and the MAST DD test were determined to be 93% [17].

The E-test has a sensitivity of 100% in SHV and TEM-type ESBLs [18].

Methods such as the E-test and the Vitek were inadequate to distinguish real ESBLs from false positive results in strains of E. coli and K. oxytoca that produce excessive K1 [19-21].

The E-test in our study had different results for ESBL in three specimens with two different strips. No one of the third-generation cephalosporins was able to detect all of the ESBLs by itself. This seems to have been caused by the ESBL substrate showing differences in spite of the high rate of similarities. It is accepted that for different types of ESBLs, application of the routine test with a single beta-lactam agent will prove insufficient in detection of these enzymes because of the changes in the optimal substrate profiles [22]. In addition, the reason we preferred the E-test over the microdilution test as an MIC test was the substantial influence of such factors as the E-test’s ease of application, the inoculum density of its results, its prediffusion period, and phase of bacterial growth [23]. On the other hand, from a technical aspect, use of the E-test is exacting and a more expensive method than other tests.

The fact that the CDT, DDST, and E-test sensitivity was high in our study suggests that the production of TEM- or SHV-type enzymes in our hospital’s strains was greater.
The sensitivity of the DDT was 100% and specificity 97.7%, the sensitivity of CDT was 80.8% and specificity 100%. The sensitivity of the DDST was calculated as 88.8% and the specificity as 100%.

The three-dimensional test and dilution methods are time-consuming and difficult to implement in practice. The E-test is materially expensive, frequently used in laboratories, and occasionally creates difficulties in reading the results of beta-lactamase inhibitor diffusion towards beta-lactam antibiotics. As a conclusion; all the three tests can be used and as phenotypic confirmatory tests both the DDST and the CLSI-recommended CDT are methods that are practical and easily applied in all laboratories. One advantage of the CDT is that it provides the convenience of using only two disks.

*This study was previously presented as a poster Klimik 2005 XII. Turkish Congress of Clinical Microbiology and Infectious Diseases P 01-47 number.

References

