On Occasion of the 12th “Days of AMNuBiH 2021” and “SWEP 2021” Conferences, Sarajevo, Bosnia and Herzegovina

Izet Masic1,2,3, Asim Kurjak1,2,4, Slobodan M. Jankovic1,5, Osman Sinanovic1,2,4, Doncho Donev1,6 Benjamin Djulbegovic1,7, Kenan Arnautovic1,8, Muharem Zildzic1, Enver Zerem1,9, Suad Kunosic10, Sylwia Ufnalska11

1Academy of Medical Sciences of Bosnia and Herzegovina, 2International Academy of Sciences and Arts in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina, 3Faculty of medicine, University of Sarajevo, Bosnia and Herzegovina, 4Sarajevo Medical School, University Sarajevo Sarajevo School of Science and Technology, Velika/Sarajevo, Bosnia and Herzegovina, 5Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia, 6Institute of Social Medicine, Faculty of Medicine, Ss Cyril and Methodius University, Skopje, R.N. Macedonia, 7Beckman Research Institute, City of Hope, Duarte, CA, USA, 8Department of Neurosurgery, University of Tennessee Health Science Center. Memphis, Tennessee, USA, 9Academy of Sciences and Arts of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina, 10Department of Physics, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina, 11European Association of Science Editors, Freelance science translator and editor, Poznań, Poland

Corresponding author: Professor Emeritus Izet Masic, MD, PhD, FWAAS, FEASA, FIAHSI, FEFMI, FACMI. Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and HerzegovinaFaculty of medicine, University of Sarajevo, Bosnia and Herzegovina. Email: izetmasic@gmail.com, ORCID ID: http://www.orcid.org/0000-0002-9080-5456.

ACTA INFORM MED. 2021 DEC 29(4): 295-310
Received: Nov 01, 2021
Accepted: Dec 03, 2021

12th Days of Academy of Medical Sciences of Bosnia and Herzegovina this year was organized together with International Academy of Sciences and Arts in Bosnia and Herzegovina in Sarajevo, Bosnia and Herzegovina on December 4th, 2021. Title of the symposium was “Scientometrics, Citation, Plagiarism and Predatory in the Scientific Publishing”. Reason for this title was very frequent cases in the academic and scientific publications about four mentioned topics in the Bosnia and Herzegovina and other countries in Balcan region, but also worldwide. Authors of the presentations at the conference came from Bosnia and Herzegovina, Croatia, Serbia, North Macedonia, USA and Poland. Within presenters of this scientific area covered by title of this conference were some of most influential scientists from Bosnia and Herzegovina who are included between 2% of authors deposited in the Stanford scientometric list, which were published several months ago. Also, some of authors are former or current Editors-in-Chiefs of indexed biomedical journals in Bosnia and Herzegovina, Croatia, North Macedonia (Izet Masic, Asim Kurjak, Doncho Donev, Osman Sinanovic). Also, Sylvia Ufnalska and Izet Masic are or have been members of the European Association of Science Editors (EASE9) and they have great experiences about topic of this conference. It was reason that we decided to prepare and publish abstracts of the conference and make it visible for other members of academic community in our countries and countries in the world.

Academic honesty means that the work scientist submits, in whatever form, is original. One of the greatest, and sadly too common, problems which participants in the academic process encountered are plagiarism and predatory. In order to prevent this severest form of academic fraud, author must give a credit to someone whose work has helped him/her by citing references correctly.

Science that analyzes scientific papers and their citation in the scientific journals - called scientometrics, day by day became important for measuring scientific validity and quality of all kinds of publications deposited in the most important on-line scientific databases, like WoS, Scopus, Medline, Pubmed Central, Embase, Hinari, etc, but also in academic platforms ResearchGate and Academia.edu. Sciometriics use Impact and Echo factor for measuring quality of publications in WoS journals, Scopus use H-Index, and most common index used last 10 years is Google Scholar. All of them have advantages and disadvantages, and also positive and negative influences in the academic praxis. Authors presented some of their experiences trying to help for improving some of mentioned matters. This collections of abstracts (or "Proceedings" of the symposium "SWEP 2021") analyzed the major components of scientometrics, the basic mechanisms of citations in medical publications and plagiarism, as an opposite to the primary goal of scientific enterprise: search for truth.
On Occasion of the 12th “Days of AMNuBiH 2021” and “SWEP 2021” Conferences, Sarajevo, Bosnia and Herzegovina

DAYS OF AMNUNBiH 2021: “SCIENTOMETRICS, CITING AND PLAGIARISM IN THE SCIENTIFIC PUBLISHING”

ABSTRACT
True knowledge is gained through scientific research (1-4). The highest level of knowledge is the ability to investigate scientific problems. Fundamental components of scientific writing are accuracy, integrity, clarity, conciseness and honesty (1, 4). Thus, good scientific writing must be characterized by clear expression, conciseness, accuracy of what is being reported, and perhaps most importantly, honesty (1, 2). Academic honesty means that the work scientist submits, in whatever form, is original. Scientometrics is part of scientology that analyzes scientific papers and their citation in the scientific journal selected sample (1). Scientometrics is the study of measuring features and characteristics of science and scientific research. In practice, scientometrics is often done using bibliometrics which is a measurement of the impact of scientific publications (5-23). Scientometric procedures are increasingly used to analyze developments and trends in science and technology. Modern scientometrics is mostly based on the work of Derek J. de Solla Price and Eugene Garfield (3). Garfield has been striving to mathematical representation developed several factors that allow the assessment value and importance of scientific publications, including the most important impact factor (IF) and the h-index (5, 8).

Recently published data in the scientometric list published by a group of authors from Stanford University in the USA, and based on the analyzed citation data of authors whose works are stored in the bibliographic database SCOPUS, aroused the interest of the BiH public, because among the most important 2% are academics from Bosnia and Herzegovina (24, 25). In order to better understand what and who it is about, it is necessary to briefly inform the scientific community on the following.

The basic part of scientometry is bibliometrics, which was introduced in the 1970s to mark quantitative research on communication processes by applying appropriate mathematical and statistical methods to published publications. In the seventies in the countries of the former Eastern bloc the name scientometry was introduced. More precisely, in 1969 the name scientometry was introduced which refers to the scientific field that deals with the study of science as an information process using quantitative (statistical) methods, and later Tibor Braun (in 1977 he founded the international journal *Scientometrics*), and then the name Scientometry was introduced. The four key indicators in the scientometric analysis of citations of scientific articles and their authors are: Impact factor; Article citation; Journal citations; Number and order of authors in the published article. “Scientometry was defined by its creators (as Naukometriya in Russian) Nalimov and Mul’chenko (1969 and 1989) as “the application of those quantitative methods which are dealing with the analysis of science viewed as an information process,” although the idea of keeping an index of citations originated in 1873 with Shepard’s Citations, in the United States common law, which enabled previous court decisions to be looked up with ease (1, 5).

Citation provides guidelines for scientific work, because it stimulates scientists to deal with the most current areas of research, and organizes scientific article at the world level, or shapes and directs it. Citation is influenced by: article quality, understanding of the article, language in which the article is written, loyalty to a group of researchers, article type, etc. Most scientific are cited by inertia, because every scientist has a set of articles that author cites whenever he/she writes about a certain topic. Some articles are cited in order that author raise citation index, a third because it is required by a reviewer or editor of a journal. And finally, perhaps only every fifth or tenth article is cited because it should have been cited. These are the articles whose data the author uses directly or touches on the problems and solutions presented there. All persons listed as authors of the article must meet the following conditions: that they have significantly con-

![Figure 1. SCImago rank in 2020 of deposited BiH journals indexed in SCOPUS](image)
On Occasion of the 12th “Days of AMNuBiH 2021” and “SWEP 2021” Conferences, Sarajevo, Bosnia and Herzegovina

Unfortunately, all of the above has been significantly neglected in the last few years, especially since the introduction of the Bologna concept of education, which disrupted the entire education system from primary schools to colleges and universities with a tendency to produce “troopers” for degrees.

One of the accompanying consequences of this is the “forcible” publication of articles and books and monographs (textbooks) that were needed to promote candidates for academic titles. This has seriously impaired the quality of education in the world, especially in the countries of the former Yugoslavia, and especially in Bosnia and Herzegovina. The problem has spread to other institutions in charge of science and scientific research, including academies. One of the authors of this article belongs to scientists who embarked, or rather dared, to deal with this problem, and in the last ten years has published several studies in the field of scientometrics, especially in

Figure 2. ScImago rank in 2020 of cited published papers in indexed journals in SCOPUS with h-Index - top 16 countries and in BiH (last one in presented table)

Figure 3. Screenshot of one of listed author presented in Stanford scientometric list

tributed to the planning and production of the article or analysis and interpretation of results and that they have participated in writing and correcting the article, and that they agree with the final version of the text. Persons who have not actively participated in the preparation of the article cannot be authors. The editor has the right to ask the author to explain the contribution of each of the co-authors, signing the relevant documents that are required when uploading the article to the journal’s website. The contribution of one author is 1, and if the article was written by several authors, their contribution is 1/n. The contribution of each subsequent author is half less than the previous one. The order of the authors is determined by authors agreement.

<table>
<thead>
<tr>
<th>Country</th>
<th># Documents</th>
<th>Citable documents</th>
<th>Citations</th>
<th>Self-Citations</th>
<th>Citations per Document</th>
<th>H-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>13817735</td>
<td>11466455</td>
<td>36850899</td>
<td>16280243</td>
<td>39673269</td>
<td>27.92</td>
</tr>
<tr>
<td>China</td>
<td>7499682</td>
<td>7299352</td>
<td>7801759</td>
<td>4461740</td>
<td>10.49</td>
<td>1916</td>
</tr>
<tr>
<td>France</td>
<td>4400724</td>
<td>3347117</td>
<td>10358036</td>
<td>23008209</td>
<td>25.47</td>
<td>1618</td>
</tr>
<tr>
<td>Japan</td>
<td>3185289</td>
<td>3135775</td>
<td>8144656</td>
<td>19490146</td>
<td>23.17</td>
<td>1308</td>
</tr>
<tr>
<td>Germany</td>
<td>3043266</td>
<td>2805497</td>
<td>5415460</td>
<td>1353127</td>
<td>17.61</td>
<td>1118</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2407599</td>
<td>2228249</td>
<td>5365833</td>
<td>11256559</td>
<td>22.92</td>
<td>1266</td>
</tr>
<tr>
<td>India</td>
<td>2182886</td>
<td>1946750</td>
<td>23218913</td>
<td>7024767</td>
<td>10.44</td>
<td>691</td>
</tr>
<tr>
<td>Italy</td>
<td>2072164</td>
<td>1846460</td>
<td>4376940</td>
<td>1035285</td>
<td>21.12</td>
<td>1135</td>
</tr>
<tr>
<td>Canada</td>
<td>2070769</td>
<td>1789688</td>
<td>35202596</td>
<td>8941609</td>
<td>23.59</td>
<td>1293</td>
</tr>
<tr>
<td>Australia</td>
<td>1626743</td>
<td>1423945</td>
<td>37607945</td>
<td>7001167</td>
<td>23.15</td>
<td>1115</td>
</tr>
<tr>
<td>Spain</td>
<td>1629563</td>
<td>1468464</td>
<td>32529835</td>
<td>8027808</td>
<td>16.98</td>
<td>1010</td>
</tr>
<tr>
<td>Russia</td>
<td>1350643</td>
<td>1236809</td>
<td>11135933</td>
<td>3726992</td>
<td>0.19</td>
<td>652</td>
</tr>
<tr>
<td>South Korea</td>
<td>1307980</td>
<td>1249802</td>
<td>2020824</td>
<td>3704219</td>
<td>15.47</td>
<td>762</td>
</tr>
<tr>
<td>Brazil</td>
<td>1104833</td>
<td>1087705</td>
<td>14701837</td>
<td>4586395</td>
<td>12.83</td>
<td>649</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1130175</td>
<td>988112</td>
<td>34852935</td>
<td>4970765</td>
<td>30.30</td>
<td>1130</td>
</tr>
<tr>
<td>Switzerland</td>
<td>945164</td>
<td>740314</td>
<td>36479615</td>
<td>3525967</td>
<td>31.23</td>
<td>1085</td>
</tr>
</tbody>
</table>

Bosnia and Herzegovina

1991 - 1992

1993 - 1994

1995 - 1996

1997 - 1998
biomch. Important study was the study of citations of members of four academies in Bosnia and Herzegovina existed in the past, and of the two more academies have been established in this year. Part of his research is cited in a study by Chicago professor Bolung Joseph, in which the author stated that the USA Academy had a Scopus h-index of 63, Africa 31, Brazil 23 and Bosnia and Herzegovina 12. The fact that only these 4 were evaluated the academy says how scalable and risky the field of scientometry is and many avoid it because every mistake puts authors on a platter to sanction it in some way. All this is stated in order to explain in some way the weight of the allegations that these and those academics, and these academies in Bosnia and Herzegovina are among the 2% of the most cited scientists in the world. Doesn’t the fact that the h-Index 12, which is significantly small compared to the well-organized countries of the world with a high level of education and high-ranking journals, bring up the question about the credibility of the data in the media and that Stanford’s list may have been misinterpreted. Therefore, this data must be analyzed more seriously and possibly argued for their accuracy and credibility. The authors who created Stanford’s scientometric list of the most cited authors from articles stored in the SCOPUS bibliographic database methodologically took into account whether someone was the first, last or only author, and the like, and did so in great detail. Unfortunately, they did not take into account the number of authors per article. Then, they looked at the number of citations according to SCOPUS, and half of our citations are missing there (there are almost twice as many on ResearchGate). By random sampling control, we found that many well-known scientists from the Balkans are not on the list—whether it is up to SCOPUS and the articles deposited in its database or whether some journals were omitted by mistake should be explored. The example of the journal Folia Medica Facultatis Medicine Universitatis Saroviensi, which does not exist at all, because it is registered in the SCOPUS database as if it were published in Zagreb (Croatia), is one of the proofs of this claim. Apparently, the list is phallic in the segment that the main thing was left out, and that is to divide the number of citations for each author by the number of authors per article—only then it would be realistic, but then half the authors would drop out of the existing list.

Some of our colleagues who deal with the problems of scientometry as a team believe that the ranking that was made and applied for publishing Stafford’s list of the most cited scientists is global, and based only on the analysis of published articles deposited in one of the world’s databases, SCOPUS, dangerous to science in general. This list emphasizes the formal part and the citation, no matter what caused it. Especially ignorant or insufficiently versed in the essence of such „meta-analyses”, mostly versed in the SCOPUS database as if it were published in Zagreb (Croatia), is one of the proofs of this claim. Apparently, the list is phallic in the segment that the main thing was left out, and that is to divide the number of citations for each author by the number of authors per article—only then it would be realistic, but then half the authors would drop out of the existing list. Some of our colleagues who deal with the problems of scientometry as a team believe that the ranking that was made and applied for publishing Stafford’s list of the most cited scientists is global, and based only on the analysis of published articles deposited in one of the world’s databases, SCOPUS, dangerous to science in general. This list emphasizes the formal part and the citation, no matter what caused it. Especially ignorant or insufficiently versed in the essence of such „meta-analyses”, mostly versed in the SCOPUS database as if it were published in Zagreb (Croatia), is one of the proofs of this claim. Apparently, the list is phallic in the segment that the main thing was left out, and that is to divide the number of citations for each author by the number of authors per article—only then it would be realistic, but then half the authors would drop out of the existing list.

In the future, we should find ways to evaluate the content - e.g., if someone did 200 experiments and showed something about an unresolved issue (whether the result is positive or negative). That work must be valued more than if someone published a secondary or tertiary publication, where he only listed and commented a little on the primary data that other people collected.

Key words: Scientometrics, Citation, Stanford scientometric list, Plagiarism.

REFERENCES

HOW TO CORRECTLY AND OBJECTIVELY ASSESS SCIENCE AND SCIENTIFIC VALIDITY OF SCIENTIFIC RESEARCH IN PRACTICE?

Asim Kurjak1,2,3
1 International Academy of Sciences and Arts in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
2 Sarajevo Medical School, University Sarajevo School of Science and Technology, Ilidza/Sarajevo, Bosnia and Herzegovina
3 Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina

Corresponding author: Professor Emeritus Asim Kurjak, MD, PhD. International Academy of Science and Art in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina E-mail: asim.kurjak1@yahoo.com, ORCID ID: http://www.orcid.org/0000-0002-1680-3030.

ABSTRACT

It is very well known that science is world activity and that there is no good and bad work in the field of scientific research. Nowadays scientific productivity of the individuals, learned societies on regional or state level are measurable parameters. In most of the systems it does include the number of original scientific papers, quality of journals measured by impact factor and scientific citation index (1-4). There are also additional measurable parameters but for the purpose of this meeting we will avoid discussion about them. New field of scientometrics using the help of impartial and ruthless machines (computers) do help very significantly in evaluation of scientific productivity anywhere in the world. Unfortunately, there are many misused conclusions and interpretation on the data offered by computers. It is clear that some vital important changes are urgently needed. Today’s conference should use rare opportunity having together experts in the field to discuss the problems visible now. This author intends to discuss facts and doubts in writing review articles and chapters in the book (5). Some important flexibility in citation, in particular self citation, should be analyzed. An illustrative examples from author’s own experience will be shown and discussed at the meeting.

Keywords: Scientific research, scientific validity, assess of science.

REFERENCES
1. Masic I, Medical Publication and Scientometrics, J Res Med
Background: Fundamental components of scientific writing are accuracy, integrity, clarity, conciseness and honesty (1, 2). Academic honesty means that the work scientist submits, in whatever form, is original. Science that analyzes scientific papers and their citation in the scientific journals is called scientometrics. Citation provides guidelines for scientific work, because it stimulates scientists to deal with the most current areas of research, and organizes scientific articles at the world level, or shapes and directs it. Citation is influenced by: article quality, understanding of the article, language in which the article is written, loyalty to a group of researchers, article type, etc. Scientific research is the only real way of communication processes by applying appropriate mathematical and statistical methods to books and other communication media. Bibliometric methods are used for quantitative analysis of written materials. Bibliometrics is closely related to one broader term „informatory”. Informatory: In 1979, Otto Nacke introduced a new metric concept of informetry, which seeks to include part of the information sciences aimed at measuring the phenomenon of information, the application of mathematical methods in solving problems of disciplines, bibliometrics and information retrieval. Some of the indicators used in the evaluation of scientific work are: Impact factor; Citation of the article; Journal citations; Number and order of authors, etc. Impact Factor is the number of citations of articles published in the journal during the previous two years divided by the total number of articles published in the journal during the same period (5). Factor of influence depends on: the quality of the journal, the language on which it was printed, the area it covers, the journal distribution system. In order to be considered as significant scientific work, it is important to be carried out according to established rules and guided steps. Although scientific writing is a complex and arduous process, it should be clear, accurate, honest and concise. Since research in medicine can affect the improvement of clinical and public health practices, it is necessary to conduct them. In order to be considered a significant scientific work, it is important that they be conducted according to certain rules and guided by the steps presented in our work. Only quality research with exact results of experiments for the evaluation of scientific validity of published articles. Explain the purpose and process of medical research and the concurrent preparation and publication of the obtained results. Methods: Author analyzed deposited papers within the topic scientometrics and used descriptive method of reviewing important facts about experiences with scientometrics in the scientific and academic practice, also, explained the process of medical research and BOMRAD form of preparation of article for publication in appropriate indexed journals. Discussion: The format of scientific articles can vary greatly from journal to journal. Nevertheless, many of them follow the IMRAD scheme, recommended by the International Committee of Medical Journal Editors (ICMJE) (3, 4). Scientometrics analyzes scientific articles and their citation in a selected sample of scientific journals. Bibliometrics was introduced in the 1970s to denote quantitative research of communication processes. Some of the indicators used in the evaluation of scientific work are: Impact factor; Citation of the article; Journal citations; Number and order of authors, etc. Impact Factor is the number of citations of articles published in the journal during the previous two years divided by the total number of articles published in the journal during the same period (5). Factor of influence depends on: the quality of the journal, the language on which it was printed, the area it covers, the journal distribution system. In order to be considered as significant scientific work, it is important to be carried out according to established rules and guided steps. Although scientific writing is a complex and arduous process, it should be clear, accurate, honest and concise. Since research in medicine can affect the improvement of clinical and public health practices, it is necessary to conduct them. In order to be considered a significant scientific work, it is important that they be conducted according to certain rules and guided by the steps presented in our work. Only quality research with exact results offers the scientific community new information about the examined problem, and the researcher personal satisfaction, the possibility of communicating and conducting scientific dialogue with other members of the academic community, and opening opportunities to receive critical review of those who have insight into the research. In this article we pointed that h-Index presents one of a set of valuable measures to determine scientific excellence (bibliometrics recognize also m-value as useful). Although the h-Index is a better measure than a citation impact factor (IF), it is still based on the opinions of other authors. Google Scholar index is very common in academic practice, but there are different opinions of experts

SCIENTOMETRIC AS A APPROPRIATE METHOD OF VALIDATION OF SCIENTIFIC CONTENTS

Izet Masic1,2

1Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina

2International Academy of Sciences and Arts in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina

Corresponding author: Professor Emeritus Izet Masic, MD, PhD, FWAAS, FEASA, FIAHSI, FEFMI, FACMI, Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina. E-mail: izetmasic@gmail.com, ORCID ID: http://www.orcid.org/0000-0002-9080-5456.

ABSTRACT

Background: Fundamental components of scientific writing are accuracy, integrity, clarity, conciseness and honesty (1, 2). Academic honesty means that the work scientist submits, in whatever form, is original. Science that analyzes scientific papers and their citation in the scientific journals is called scientometrics. Citation provides guidelines for scientific work, because it stimulates scientists to deal with the most current areas of research, and organizes scientific articles at the world level, or shapes and directs it. Citation is influenced by: article quality, understanding of the article, language in which the article is written, loyalty to a group of researchers, article type, etc. Scientific research is the only real way and method for the proliferation of true knowledge in all spheres of science, but also in academic institutions. The ability to study a scientific problem is the highest level of knowledge. Medical, and in a broader sense biomedical scientific research, is a process of systematic research of current and important health problems related to defined aspects of physical, mental or social well-being of the population of local, regional or global character. Objective: To present the current tools available in scientometry for the evaluation of scientific validity of published articles. Explain the purpose and process of medical research and the concurrent preparation and publication of the obtained results. Methods: Author analyzed deposited papers within the topic scientometrics and used descriptive method of reviewing important facts about experiences with scientometrics in the scientific and academic practice, also, explained the process of medical research and BOMRAD form of preparation of article for publication in appropriate indexed journals. Discussion: The format of scientific articles can vary greatly from journal to journal. Nevertheless, many of them follow the IMRAD scheme, recommended by the International Committee of Medical Journal Editors (ICMJE) (3, 4). Scientometrics analyzes scientific articles and their citation in a selected sample of scientific journals. Bibliometrics was introduced in the 1970s to denote quantitative research of communication processes. Some of the indicators used in the evaluation of scientific work are: Impact factor; Citation of the article; Journal citations; Number and order of authors, etc. Impact Factor is the number of citations of articles published in the journal during the previous two years divided by the total number of articles published in the journal during the same period (5). Factor of influence depends on: the quality of the journal, the language on which it was printed, the area it covers, the journal distribution system. In order to be considered as significant scientific work, it is important to be carried out according to established rules and guided steps. Although scientific writing is a complex and arduous process, it should be clear, accurate, honest and concise. Since research in medicine can affect the improvement of clinical and public health practices, it is necessary to conduct them. In order to be considered a significant scientific work, it is important that they be conducted according to certain rules and guided by the steps presented in our work. Only quality research with exact results offers the scientific community new information about the examined problem, and the researcher personal satisfaction, the possibility of communicating and conducting scientific dialogue with other members of the academic community, and opening opportunities to receive critical review of those who have insight into the research. In this article we pointed that h-Index presents one of a set of valuable measures to determine scientific excellence (bibliometrics recognize also m-value as useful). Although the h-Index is a better measure than a citation impact factor (IF), it is still based on the opinions of other authors. Google Scholar index is very common in academic practice, but there are different opinions of experts
about its advantages and disadvantages if compare it with Scopus’ h-Index quality. **Conclusion:** This paper analyzes the major components of scientometrics, the basic mechanisms of citations in medical publications, as an opposite to the primary goal of scientific enterprise.

Key words: Scientometrics, h-Index, Google Scholar index

REFERENCES

INFLATION OF CO-AUTHORSHIP AS THE MAIN SOURCE OF SCIENTOMETRIC (NON) OBJECTIVITY

Slobodan M. Jankovic1, Izet Masic2

1Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo; Bosnia and Herzegovina
2Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia

Corresponding author: Professor Slobodan M. Jankovic, MD, PhD. Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia. E-mail: slobnera@gmail.com. ORCID ID: http://www.orcid.org/0000-0002-1519-8828.

Background: Co-authorship only partially reflects research collaboration; it is also the result of other phenomena besides collaboration, such as social relations, frequency of communications, financial and other (e.g. reputation) resources invested by principal author, etc (1-5). **Objective:** The aim of this article was to analyze bias introduced into scientometric indicators and benchmarking by publications with 30 or more co-authors. **Methods:** After identifying a subset of publications cited by PubMed with 30 or more co-authors, a sample of 100 publications was extracted randomly. One of the authors from each of the extracted publications was also chosen randomly, forming final study sample of 100 scientists. All citations of the chosen authors listed at their Google scholar profiles were analyzed from the aspect whether they could be ascribed to publications with more than 30 authors, or not, and what was contribution of such publications to scientometric rank of the authors. **Results:** While publications with more than 30 authors make on average only 10.8% of all publications of analyzed authors, they contributed to 46.6% of their citations and to 48.4% of their Hirsh index values. This effect was more pronounced among authors with shorter scientific careers, whose Hirsh index was boosted with such publications. **Conclusion:** Publications with large (more than 30) number of co-authors are on average cited much more frequently. Citations of publications with large number of co-authors boost scientometric rank of an author disproportionally to his or her contribution to such publications: while it is obvious that the contribution is 1/n (where n is number of co-authors), he or she is credited with full number of citations of such publication (c), instead with c/n, which is logical and rightful. Using rankings of scientists without removing such obvious bias caused by multiple co-authorship may have long-term deleterious influence on development of science. **Keywords:** co-authorship, scientometrics, bias, benchmarking.

REFERENCES

IMPACT OF THE COVID-19 PANDEMIC ON SCIENTIFIC RESEARCH IN THE BIOMEDICAL SCIENCES

Osman Sinanovic1,2,4

1Medical Faculty, University of Tuzla, Tuzla, Bosnia and Herzegovina
2Sarajevo Medical School, University Sarajevo School of Science and Technology, Ildiza/Sarajevo, Bosnia and Herzegovina
3Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
4International Academy of Sciences and Arts in Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina

Corresponding author: Professor Emeritus, MD, PhD. Medical Faculty, University of Tuzla, Tuzla, Bosnia and Herzegovina. E.mail: osman.sinanovic1@gmail.com. ORCID ID: http://www.orcid.org/0000-0001-8957-7284.

ABSTRACT

We will not know the long-term impact of the SARS-CoV-2
viral outbreak for some time yet, but many of scientists have already begun to feel the effects - not only on their daily lives but also on their scientific work in general context (1-4). With partial or complete institutional shutdowns in countries worldwide, the global COVID-19 health crisis has rapidly impacted the life science landscape, including their patterns of work. Some scientists were unable to carry out experiments because of COVID-19-related working restrictions, especially in the first year of pandemic and periods of pandemic worsening or because they need to look after children in connection with the closure of schools and kindergartens. This was a frightening feeling, especially for young scientist, who usually have short-term contracts and may worry about their future careers. Many basic research labs quickly tuned their priorities to study aspects of SARS-CoV-2. For example, recent advances in sequencing technology allowed researchers to rapidly compare viral genomes from patients at the early stages of the outbreak to trace its origin to bats — knowledge that could help prevent the future outbreak of another novel coronavirus. The COVID-19 pandemic has mobilised researchers worldwide on a scale and timeframe that have never been seen before for one specific disease. The number of COVID-19 manuscripts being submitted for peer review has also greatly increased. For instance, The Journal of the American Medical Association has indicated that more than 11 000 manuscripts were submitted between Jan 1 and June 1, 2020, whereas around 4000 manuscripts were submitted during the same period in 2019. Virtually the entire increase has been related to manuscripts focused on COVID-19, with about one-third representing original research (full-length manuscripts, brief reports, and research letters) and two-thirds representing opinion (Viewpoints, A Piece of My Mind) and reviews. Scientific journals have accelerated their peer review process to expedite the publications of studies for COVID-19: One analysis shows that the time between submission and publication of articles on COVID-19 has decreased on average by around 50%, from 117 days down to 60. This analysis also showed that the time to publication for research not related to COVID-19 has remained unaffected, but it is probable that the number of research articles unrelated to COVID-19 has dropped considerably, with COVID-19 predominating in receipt of funding and attention from the research community.

Keywords: COVID-19 pandemic, Impact, Scientific research, Biomedical sciences.

REFERENCES

ABSTRACT

We live in an unprecedented time of scientific progress, which is increasingly dominated by a paradox: more money is spent on health care research, development and delivery, and yet health outcomes, quality of care and quality of research is by all measures considered suboptimal. The efficiency of current research system increasingly undermines public trust in science, which ultimately leads to corrosive effect on societies’ well-being, as witnessed during the COVID19 pandemic(1-4). The research system must improve. It is responsibility of scientific community to identify “good” from “bad” research practices and to weed out the latter. However, the public also needs to understand that 100% efficient research is not theoretically possible, remain skeptical about exaggerated claims (“hypes”) as good science typically progresses incrementally. To realize these goals, this talk will review practices of avoidable and unavoidable research waste and call for establishing new metrics (index of research waste). To improve research system each country/organization should undertake regular audits of its research practice activities and make data publicly available. Collecting these data may inform development of research waste metrics to complement traditional scientific metrics that do not capture this important dimension of scientific activity (5-7).

Keywords: Biomedical research, Avoidable and Unavoidable Waste.

REFERENCES

5. Chalmers I, Bracken MB, Djulbegovic B, et al. How to in-
crease value and reduce waste when research priorities are set. The Lancet. 2014;383(9912):156-165.

INFLUENCE OF SCIENTOMETRICS ON ACADEMIC PROMOTION AND RANKING OF UNIVERSITIES

Enver Zerem¹, Suad Kunosić²

¹Department of Medical Sciences, Academy of Sciences and Arts of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina
²Department of Physics, Faculty of Natural Sciences and Mathematics, University of Tuzla, Bosnia and Herzegovina

Corresponding author: Professor Enver Zerem, MD, PhD, Department of Medical Sciences, The Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina; Email: zerem@live.com ORCID: 0000-0001-6906-3630

ABSTRACT

Introduction: The product of scientific research is mainly information published in scientific journals and they are the basis for the dissemination of knowledge, as well as the basic criteria for academic and scientific evaluation, raising of funds for scientific research and career advancement. The key question, which has always remained elusive in science and higher education, is on the basis of which criteria the quality of research is measured, and how to ensure the fulfillment of standards so that all provide adequate quality of resulting competencies. Since scientific research through innovations, patents and publications can be much more accurately measured and evaluated, compared to educational and other activities of universities, these parameters often appear as predetermining measures in evaluating the quality of higher education. Significant financial resources are being invested in the formation of various international university ranking lists. The most prestigious ranking lists of universities in the world publish their results once or twice a year. Relevant university ranking lists consider various parameters, but for most universities (with the partial exception of the first 100) the number of publications and the impact that these publications achieve through citation are of the greatest importance in ranking. The competition to take a prestigious place on the world ranking list of top universities is increasing heating up and taking on the characteristics of a battle for status and various kinds of domination of the most developed countries in the world. It is clear that numerous shortcomings can be found in the criteria for forming university ranking lists, but the ranking systems, whether we like it or not, are becoming part of the reality of the existence and work of thousands of universities in the world. The fact is that investments in scientific research work affect the improvement of scientific production. However, without the introduction of internationally recognized scientific criteria in the evaluation of scientific research, and the coordination of academic progress in accordance with the criteria, even the current miserable investment in science is essentially a useless waste of taxpayers’ money. The existence of an effective regulatory institution at the level of Bosnia and Herzegovina, which would establish unique criteria in higher education at the state level with the possession of competencies and mechanisms for effective supervision of their implementation, would contribute to improving the situation in science and higher education.

Key words: internationally recognized criteria, academic community, education, ranking of universities.

REFERENCES

ary communication is at serious risk and threats to the quality of published articles when scholars and authors submit and publish their manuscripts in predatory journals. **Objective:** To point out the problem of predatory publishing with causes and consequences, main characteristics and features of fake journals, and how to support and help authors to distinguish predatory journals from open access journals to prevent and avoid publishing in such journals. **Methods:** Exploring Beall’s and Cabell’s lists of predatory publishers and journals and review of the relevant published literature, as well as personal experience and observations of the author. **Results:** There is no unified and generally accepted definition in the literature on predatory publishers and fraudulent journals, as well as an efficient strategy for prevention, control, and solving the problem of predatory publishing. Jeffrey Beall, an American librarian and library scientist from Denver, University of Colorado, has drawn attention and initiated broad discussions in the scientific community in 2010 on predatory open access publishing. He composed and maintained widely known Beall’s lists of potentially predatory publishers and open-access predatory journals. Predatory publishers and journals attract and recruit authors by false or misleading information and a lack of transparency. They prioritize self-interest with aggressive practices and accept submitted manuscripts for prompt publishing — along with authors’ publication fees — without peer review and promised quality checks for issues such as plagiarism or ethical approval. Jeffrey Beall made a profound influence and the debate he initiated is continuing in the scientific community with an increased number of authors and published articles on this burning and unresolved issue in the scientific community. Specific recommendations are necessary to be continuously given to researchers, educational institutions, and prestigious databases advising them to review their working relations with predatory publishers and journals. Scientific societies and publishers (including Springer Nature) have helped to establish the ‘Think. Check. Submit.’ campaign to guide authors. **Conclusion:** Predatory publishers and hijacked journals are a global threat to the scientific community with deviation from best editorial and publication practices. Threats and consequences of fake journals are numerous and multidimensional. The main barriers to combating predatory publishing are the lack of an agreed definition and coherent strategy with efficient interventions. Awareness-raising in the scientific community and continuous education of authors about predatory publishers and journals on how to differentiate trustworthy-reliable journals and predatory ones and to avoid predatory journals is still the central point in the strategy toward solving the problem of predatory publishing. There are a large number of checklists to help authors to detect potential predators and guard, especially young scientists, against publishing in predatory journals. The academic and scientific community must set the criteria for scientific advancement by not recognizing and valuing the articles published in the predatory journals. Besides academic institutions and researchers in the scientific societies, active contribution to combat predatory publishing is necessary by the publishing associations, research funders, policymakers, libraries, and other interested parties and stakeholders at local, national, and international levels. **Keywords:** predatory publishing; Beall’s lists; fraudulent, hijacked journals; Gold open access, pseudoscience. **REFERENCES**

14. DSI – NRF Centre of Excellence in Scientometrics and STI Policy. How to identify and respond to the continuing threat of predatory publishers and journals. SciBytes@SciSTIP Nr

RELATIONSHIP BETWEEN EDUCATION AND FAMILY MEDICINE PRACTICE. WHAT DID WE LEARN IN COVID-19 PANDEMIC?

Muharem Zildzic
Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina

Corresponding author : Professor Muharem Zildzic, MD, PhD. Academy of Medical Sciences of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina. E-mail: zildzic@yahoo.com. ORCID ID: http://www.orcid.org/0000-0001-5418-2274.

ABSTRACT

Background. At the end of the last century Alma-Ata Declaration recommended strengthening primary health care. With the “health for all” statement, general practice and family medicine came into the focus. At the beginning of the 21st century, the reform of the health care system began with the reinforcement of general practice/family medicine. WONCA Europe definition sets educational criteria and standards in practice. The WHO and WONCA Association made recommendations for the development of academic departments in family medicine. Family medicine is implemented as an independent, academic and scientific discipline with specific educational and research content. Objective. The aim of this paper is to analyze the implementation of family medicine in Bosnia and Herzegovina according to EURACT educational agenda. The second goal is to assess how the acquired knowledge, skills and learned competencies are applied in practice in reformed healthcare centers, particularly during the COVID-19 pandemic. Methods. The entire teaching system in undergraduate, postgraduate and continuing education in the department of Family Medicine in Tuzla was evaluated through the department reports and published information, as well as professional papers and publications. Published papers in European journals during the 2020 and 2021 COVID-19 pandemic and the process of education and the family medicine practice were analysed. Results. In Bosnia and Herzegovina, family medicine has been successfully implemented as a basic, academic and scientific discipline in the reformed system of primary health care. According to the principles of the EURACT educational agenda academic and educational activities have been implemented. New educational methods and modules for acquiring skills of 6 key competencies have been introduced. For the successful application of “patient-oriented clinical practice” in their practical work, family medicine teams met the criteria for full accreditation. In the last 6 years, delays and obstacles in practical work have been registered, and the main factors of obstruction are at the level of politics, law and economy. The COVID-19 pandemic led to almost complete collapse of family medicine practice mostly because telemedicine principles were not applied. Conclusion. According to the recommendations of WHO, WONKA and EURACT, family medicine has been implemented in Bosnia and Herzegovina as a major academic and scientific discipline in the reformed primary health care system. New educational methods and models for acquiring skills of 6 key competencies had been introduced. In the last 6 years, there has been a stagnation in the further implementation of practical work. The main factors of obstruction are at the level of politics, law and economics. During the pandemic, the teaching process was significantly changed due to the difficulty of applying all the practical skills described in the definition of P / O medicine. Telemedicine educational modules have not been introduced. A pandemic significantly changes the content and methods of learning. Keywords: Family medicine, education, practice, telemedicine, Covid-19.

REFERENCES
5. Morales-Mann et, Kaitell CA, Problem-based learning in a
WE NEED MORE EFFICIENT COMMUNICATION OF RESEARCH RESULTS: WHAT CAN WE DO TO IMPROVE IT?
Sylwia Ufnalska
Honorary Member of European Association of Science Editors (EASE), Poznan, Poland

Corresponding author: Sylwia Ufnalska, Honorary Member of the European Association of Science Editors (EASE), Poznan, Poland. E-mail: sylwia.ufnalska@gmail.com. ORCID ID: http://www.orcid.org/0000-0000-0016-2400-5781.

ABSTRACT
In October 2020, as a member of the EASE Council, I launched the campaign ”Help scientists save time” (1, 2). It aimed to minimize editorial requirements for initial manuscript submission. This can be crucial for faster progress in scientific research, because many manuscripts are rejected and often must be reformatted before submission to another journal. That is why we promote simplification of the requirements and placing the EASE Quick-Check Table at the beginning of instructions for authors in each journal (3, 4). The Table makes it easier for scientists to search for basic information needed for manuscript submission. The table has been translated into 15 languages. Communication of research results can be also improved by the use of EASE Guidelines for Authors and Translators of Scientific Articles (5). The main part of this useful, readable document is now freely available in 30 languages. The Italian Chapter of EASE has decided to translate also its appendices and additional information (pages e7-e16). This may facilitate further streamlining of the publishing process. Moreover, “Golden rules for scholarly journal editors” (6) and other helpful EASE publications for scientists, translators, and editors have been briefly presented in bilingual slides at a webinar for the Ukrainian Chapter of EASE (7). The slides have been translated also into Japanese (8), so other EASE Chapters can consider such a possibility likewise. Many authors have suggested interesting improvements, too. These include changing the IMRAD structure into BOMRAD (i.e. replacing Introduction by two sections: Background and Objectives), complete elimination of pre-submission formatting and cover letters (9, 10), creation of centralized websites that serve many journals, to allow swift resubmissions from one journal to the next (11), and publishing full-text scientific articles in HTML (not just PDF) to facilitate machine translation (12). All this can contribute to improving the efficiency of scientific communication worldwide and, consequently, to solving urgent problems, e.g. related to environmental pollution or the COVID-19 pandemic (13).

Keywords: EASE, Communication of research results, Science editing, Science publishing.

REFERENCES
3. EASE Quick-Check Table for Submissions. European Association of Science Editors. https://ease.org.uk/publications/ease-statements-resources/quick-check-table-for-submissions/
5. EASE Guidelines for Authors and Translators of Scientific Articles to be Published in English. European Association of Science Editors. https://ease.org.uk/publications/author-guidelines-authors-and-translators/
10. Teixeira da Silva JA. Simplify manuscript submission and optimize authors’ resources by eliminating formatting and cover letters. European Science Editing 2020; 46: e52063. https://doi.org/10.3897/ese.2020.e520635
Example journal: Quick check for submissions

The following table is provided as an example of how the details in this form may be presented.

<table>
<thead>
<tr>
<th>BASIC INFORMATION FOR AUTHORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL GUIDELINES</td>
</tr>
<tr>
<td>WORD LIMITS, etc.</td>
</tr>
<tr>
<td>Body text</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>Keywords</td>
</tr>
<tr>
<td>Highlights (below the abstract)</td>
</tr>
<tr>
<td>Tables/figures</td>
</tr>
<tr>
<td>TITLE PAGE INFORMATION</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>Short running title</td>
</tr>
<tr>
<td>Author names</td>
</tr>
<tr>
<td>Affiliation info required</td>
</tr>
<tr>
<td>Corresponding author contact details</td>
</tr>
<tr>
<td>Persistent identifiers of author(s), etc.</td>
</tr>
<tr>
<td>STRUCTURE OF BODY TEXT, END MATTER, REFERENCES</td>
</tr>
<tr>
<td>Typical headings</td>
</tr>
<tr>
<td>Subheadings</td>
</tr>
<tr>
<td>Specific wording required for any section</td>
</tr>
<tr>
<td>End matter (e.g. authorship contributions)</td>
</tr>
<tr>
<td>References: maximum number</td>
</tr>
<tr>
<td>Referencing style</td>
</tr>
</tbody>
</table>
FORMATTING

<table>
<thead>
<tr>
<th>Spelling</th>
<th>UK or US, if consistent</th>
</tr>
</thead>
</table>
| General style | * Numbers ≥ 2 as numerals (for exceptions, see EASE Guidelines)
| | * Statistics: $p \leq 0.001$, $n = \#\#$ |

SUBMISSION NOTES

<table>
<thead>
<tr>
<th>Cover letter required?</th>
<th>Not required but text field in the online submission system allows for comments to the editorial office. Inform if the study was presented elsewhere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific content?</td>
<td></td>
</tr>
</tbody>
</table>
| Links to all required author forms: needed at submission or after acceptance? Signed by all authors or by submitting author? | * EASE Ethics Checklist signed by corresponding author, at submission
| | * EASE Form and/or ICMJE COI forms signed by all authors, at submission |
| Proposed reviewers: optional/mandatory? | Optional: suggest/oppose up to 3 potential reviewers (full name, email, institution). Consider diverse peer reviewers in terms of sex/gender, ethnicity and geographical distribution |
| How many? What details are required? | |
| Tables: separate files? | Include at the end of the manuscript (separate pages) |
| Figures: separate files? Any formats preferred? | For initial submission, figures can be embedded in the manuscript. If it is accepted, high-resolution files (EPS/TIFF/RAW) will be required |
| Supplementary files? | Upload any supporting data or other required files for review |
| Fees for open access, colour, etc.? | Publication fee X. Colour free online but X per figure for print |

JOURNAL POLICIES, etc.

<table>
<thead>
<tr>
<th>Publication model*</th>
<th>Open access, licence X; fee structure: <URL></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprint and prepublication</td>
<td>Articles already available on preprint servers or published in another language can be accepted but this must be declared at the time of submission</td>
</tr>
<tr>
<td>Data sharing</td>
<td>Recommended repositories: … Clinical trials must include a data sharing statement; other studies may also do so</td>
</tr>
<tr>
<td>Peer review**</td>
<td>External, double-blind review usually by X reviewers. Editors make the final decision</td>
</tr>
<tr>
<td>Manuscript acceptance rate and average times</td>
<td>About X% submitted manuscripts are accepted. Average time from submission to first decision after peer review: X months</td>
</tr>
</tbody>
</table>

* Publication models: subscription, hybrid (open access optional for a fee) or open access
** Peer review systems: open, single-blind (authors do not know the identity of reviewers), double-blind (authors do not know the identity of reviewers, and reviewers do not know the identity of authors), triple-blind (also editors do not know the identity of authors/institution)
On Occasion of the 12th “Days of AMNuBiH 2021” and “SWEP 2021” Conferences, Sarajevo, Bosnia and Herzegovina

DANI AKADEMIJE
MEDICINSKIH NAUKA U BIH
DANI MEĐUNARODNE AKADEMIJE
NAUKA I UMJETNOSTI U BIH

TEME:
- SCIENSTOMETRIJA, CITIRANJE, PLAGIJATI I
PREDAJORSTVO U NAUČNOM PUBLICIRANJU
- DIZAJN OPSERVACIONIH KLINIČKIH STUDIJA

Hotel Holiday, Sarajevo

Subota
04.12.
Hotel "Holiday", Sala Una

09.30-10.00 Aam Rajp: KAKO ISPRAVNO I OBJEKTVIJO PROIURIRATI NAUČNOST I NAUČNU VALENOS STRUJANJU U PRAKSI
10.00-10.30 Izet Mašić: SCIENSTOMETRIJA - IMPERATIV NAUČNE VRJEDNOSTI SADRŽAJA NAUČNIH PUBIKACIJA
10.30-11.00 Osman Sinanovic: KOI JE KORONA PANDEMA PRODUROVALA KRNZU NAUČNE OPORINU I U BIOMEDICINSKIM NAUČNIM STRUJANJU
11.00-11.30 Mladen Zlatić: DIZAJN IZMJEĐU EDAUGACIJE I PRASKE U OBRAZOVNOJ MEDICINI ŠA SMIO TQ NAUČNU TOŠI COVID-19 PANDEMA
11.30-12.00 KAFE PAUZA
12.00-12.30 Dejdrak Dezan: PREDAJORSTVO I PREDAJ - GOTOVO NEURREUZIJEME STRUJANJU U BIOMEDICINSKIM NAUČAKIJA
12.30-13.00 Emir Zesan: UTOČ NAUK NJUZMETRIJE NA AKADEMJSKU PROMOCIJU I RANGIRANJU UNIVERZITETA
13.00-13.30 Kamen Orgačbo: BIBLIOMETRIJSKE POZAKATELJI CITIRANOSTI U ŠEST NAJSVAŽNIJIMI ZASPISA U NEUROHRURGIJI U ZADNJOJ DESET GODINA RNJOG PUBIKACIJA
13.30-14.00 JUJAK
14.00-15.00 Benjamin Djulbegovic: DOZVOLJENA I NEDOZVOLJENA NEPOTREBNA PRAKSA U MEDICINSKIM STRUJANJU
15.00-15.30 Slobodan Jankovic: DIZAJN OSERVACIONIH KLINIČKIH STUDIJA - JE GLAVNI RAZLOG I ZDOR OBJEKTIVNOSTI U SCIENSTOMETRIJU
15.30-15.45 Sylwia Ufnalska: POTREBNA NAM JE DEJNKONJOM KOMUNIKACIJA U REZULTATIMA STRUJANJU: KAKO TO UNAPRIJEDITI U PRAKSI?

15.45-18.00 Kratak kurs: DIZAJN OPSERVACIONIH KLINIČKIH STUDIJA
1. Izbor teme za istraživanje
2. Izbor vrste studije
3. Izoliranje nekontrolisanih uzorka
4. Izbor studijskih varijabli
5. Etički odbor i regulativa
Diskusija, Zaključci, Preporuke.
Podjela certifikata polaznicima kursa.

Hotel Holiday, Sarajevo
O DOBRENJE IZNAH: RIVER® 10 mg: Prevećnica venske tromboemboli (VTE) u odraslih pacijenata koji se podnose pod elektromedikinomalnom zahvalom usrednje ujedravnjeg kula ili klozama. RIVER® 15 mg, RIVER® 20 mg: Prevećnica moždanog udara i slične embolije u odraslih pacijenata s nevahalnom fibrilačnom atrijijom koji imaju jedan ili više faktora rizika poput konjestivnog zatijanja sra, hipertenze, dobi od 75 godina, šećerne bolesti, pretjeranog moždanog udara ili transzitorne ischemijanske atake. RIVER® 10 mg, RIVER® 15 mg, RIVER® 20 mg: Ličenje duboke venske trombose (DVT) i plućne embolije (PE) prevećnica ponavljajućih duboke venske trombose i plućne embolije u odraslih pacijenata. KONTRAINDIKACIJE: Prevećnica u određenim situacijama, uključujući protuobalagans, protuobalagans u prevenciji kardiovaskularnih udara, druge vijesti o prevećnici u prevećnici ili RIVER® 10 mg, RIVER® 15 mg, RIVER® 20 mg; protuobalagans u odraslim pacijenata s nevahalnom fibrijačnom atrijijom koji imaju jedan ili više faktora rizika poput konjestivnog zatijanja sra, hipertenze, dobi od 75 godina, šećerne bolesti, pretjeranog moždanog udara ili transzitorne ischemijanske atake. RIVER® 10 mg, RIVER® 15 mg, RIVER® 20 mg: Ličenje duboke venske trombose (DVT) i plućne embolije (PE) prevećnica ponavljajućih duboke venske trombose i plućne embolije u odraslih pacijenata.

NEPREKINUTA LINIJA ŽIVOTA
Jednostavna i sigurna antikoagulantna zaštita

Pakovanje:

film tablete 10 mg x 10	br. (riješenje: 04-07-21-3104-20)
film tablete 15 mg x 30	br. (riješenje: 04-07-21-3105-20)
film tablete 20 mg x 30	br. (riješenje: 04-07-21-3103-20)

Lijek se izdaje uz lijekarski recept.

Bosnički d. J. Jukićeva 53, Sarajevo, Bih.