Dystocia Due to Uterine Torsion in a Buffalo

D. K. Giri*, Govina Dewangan, Deepak Kumar Kashyap and R. M. Tripathi1

College of Veterinary Science and Animal Husbandry, Anjora, Durg, (C.G.) India

1District Veterinary Hospital, Bilaspur (C.G.)
*Corresponding author email- giri.devesh18@gmail.com

Abstract

Uterine torsion is a major cause of dystocia in buffaloes which may result in stress to the animals and a hurdle in profitable dairy industry. The present case is a report of dystocia due to uterine torsion in a non-descript buffalo and its clinical management.

Key words: Dystocia, Uterine Torsion, Tachycardia, Tachypnea and Buffaloes.

Introduction

Uterine torsion is a rotation of the gravid uterus on its longitudinal axis. In bovines, the striking feature of uterine torsion is its association with advanced pregnancy and process of parturition (Ghuman, 2010). It is the single major cause of maternal dystocia in buffaloes (Prabhakar et al. 1994). The incidence of uterine torsion as well as the time of its occurrence in bovines emphasizes its impact on dam’s health and thus the dairy herd profitability (Schönfelder and Hasenclever, 2005).

Case History and Clinical Observations

A non-descript buffalo in its third gestation was brought to the District Veterinary Hospital, Bilaspur (C. G.) with the history of prolonged 1st stage of parturition. The buffalo had mild labour pain since 12 hours, uneasiness, restlessness evidenced by often kicking at its abdomen. Clinical examination of buffalo revealed tachycardia and tachypnea. External examination of vulva showed that the dorsal commissure was pulled little bit forward to the left. Following epidural anaesthesia, the rectal examination revealed that the dorsum of the vagina was spirally folded forward and downward. Per vaginal examination disclosed that, the right broad ligament was crossing over the top of the twisted portion of the birth canal and left broad ligament was pulled tightly downward. The foetus was alive, in anterior presentation and dorso-pubic position. Based on the history and clinical examination the case was diagnosed as left handed (anti-clockwise) uterine torsion of about 180°.

Treatment and Discussion
The animal was given epidural anaesthesia 10ml (2% Lignocaine) and secured properly with its hind portion raised. After proper lubrication, rotation of foetus and uterus through the birth canal was done. As the torsion was about 180°, so it was possible to pass hand through the twisted birth canal. The foetus was rocked back and forth along with rotating the foetus and uterus in the direction of torsion and then a sudden strong twist was given to the opposite side of torsion. As the foetus was in anterior presentation with the front limb extended, it was then easier to remove the viable foetus. The neonate was cleaned and primary veterinary care was provided. To the dam inj Amoxicillin 2.5gm, inj Chlorphenramine malate (10ml), inj Meloxicam (10ml) and inj. Tribivet (Multivitamin) (10ml) all intramuscularly for three days were given. For faster and uncomplicated recovery of uterus four Metronidazole boluses were inserted in the uterine horns. Injection of Ca and Mg 300ml, I/v and 150ml s/c were also given. The animal recovered uneventfully with her healthy calf.

The incidence of dystocia appears higher in larger breeds (Roberts, 1997). Between bovine species, anatomical variability in the attachment of broad ligaments to uterus seems to have a role in predisposition of pregnant uterus to torsion. The likelihood of torsion is less in Bos indicus cattle compared to Bos taurus cattle, crossbred cattle and buffaloes due to anatomical differences (Srinivas et al. 2007). Brar et al., 2008 concluded that certain population of buffaloes have weak broad ligaments, which predispose them to uterine torsion. If not untreated timely, it could cause huge economic losses to dairy herd profitability.

Summary

Dystocia due to uterine torsion in a non-descript buffalo and its clinical management has been reported.

References