Original Research

Effect of In-ovo injection of Glucose, Lysine, Threonine and β-hydroxy-β-methylbutarate (HMB) on the Morphometry of Digestive Organs in Commercial Broilers

Kanagaraju Palaniyandi1*, Babu Mannu2, Ramesh Shummun3, Rathnapraba Sambandam4 and Survase Swapnil Harishchandra5

1Department of Poultry Science, Tamil Nadu Veterinary and Animal Sciences University, Madras Veterinary College, Chennai-600 007, Tamil Nadu, INDIA
2Centre for Animal Production Studies, Madhavaram Milk Colony, Chennai-51, Tamil Nadu, INDIA
3Central instrumentation Laboratory, Madras Veterinary College, Chennai-07, Tamil Nadu, INDIA
4Department of Animal Biotechnology, Madras Veterinary College, Chennai-07, Tamil Nadu, INDIA
5Department of Poultry Science, Madras Veterinary College, Chennai-07, Tamil Nadu, INDIA

*Corresponding author: kanraj2007@gmail.com

Rec. Date: Feb 15, 2018 16:04
Accept Date: Apr 22, 2018 16:21
DOI 10.5455/ijlr.20180215040406

Abstract

Under field conditions, most of the broiler chicks receive feed and water 24-36 hours after hatching results in decreases body weight and impairs overall performance. Hence, a biological trial was carried out in broilers to investigate the effect of In-ovo injection of glucose, lysine, threonine and β-hydroxy-β-methylbutarate (HMB) on the morphology of digestive organs in commercial broilers. On the 18th day of incubation, of total 540 embryonated, each 90 eggs were injected with 0.5 ml of 10 % glucose solution (T3), 0.5 ml of 0.5 % lysine solution (T4), 0.5 ml of 0.5 % threonine (T5), 0.5 ml of 0.5 % β-hydroxy-β-methylbutarate (HMB) (T6) along with 90 eggs as non-injected control (T1) and 90 eggs as injected control. A pin head size hole was made just below the air cell and 0.5 ml of (In-ovo injection) nutrient solution was injected into the amnion using an insulin syringe. The hole was sealed and the period of incubation was completed. Biological feeding trial was continued up to 42 days with 288 broiler chicks from different In-ovo treated groups each with three replicates of sixteen chicks each. The chicks were fed ad libitum with broiler pre-starter, starter and finisher mash as per BIS (2007) specifications from 1-10, 11-21 and 22-42 days of age respectively. Data on absolute weight of digestive organs at sixth week of age was recorded by using an electronic balance with 0.2 g accuracy and subjected to statistical analysis. Results revealed that In-ovo injection of glucose, lysine, threonine and HMB on 18th of incubation produced significantly heavier liver and pancreas on absolute weight basis. However, other digestive organ absolute and relative weights were not significantly influenced in this study. In-ovo injection of vital nutrients increased only accessory digestive organs like liver and pancreas of broilers whereas other digestive organs weight was not affected.

Key words: Broiler Chicken, Digestive Organs, Glucose, HMB, In-ovo Injection, Lysine, Morphometry, Threonine

Introduction

Under field conditions, most of the broiler chicks receive feed and water 24-36 hours after hatching, which results in mobilization of body reserves to support metabolism, thermo regulation; decreases body weight and impairs overall performance. During immediate post-hatch period, glycogen reserves decline rapidly and adversely affect the growth and livability. Chick’s first meal occurs when they consume the amnion fluid before internal pipping (about 18th day of incubation in broilers). Injecting appropriate nutrients in to amnion is a novel way to feed critical dietary components to embryos. In-ovo technology may also provide a precision nutrition at the specific time for peak absorption of specific nutrients, cofactors or metabolic modulators by the embryo. Glucose (GLUC) provides immediate source of energy for piping. Bhanja and Mandal (2005) reported that In-ovo injection of limiting amino acids in different combinations at 14 d of incubation did not have any influence on the length and weight of the digestive and immune organs. Whereas Santos et al. (2010) demonstrated In-ovo feeding of different nutrient solutions and sodium chloride (control) into broiler breeder eggs on 18th d of incubation resulted in more absolute and relative weight of digestive organs and intestine at day old and up to 3 weeks of age. The development and health of digestive system is of prime importance in broilers to express its full genetic potential. Hence, the present study was planned to investigate the effects of In-ovo injection of glucose, lysine, threonine and β-hydroxy-β-methylbutarate (HMB) on morphology of digestive organs of hybrid broiler chicken.

Materials and Methods

In-ovo injection of nutrient solutions was done as per the modified Noor et al. (1995) method. The In-ovo injection was carried out in empty incubation cabinet where the temperature and humidity was maintained at 37.5°C and 60 per cent, respectively.

On 18th day of incubation, the eggs were candled and infertile eggs were discarded. 540 fertile eggs were removed from the incubation tray and placed in plastic egg flats. 90 eggs were randomly assigned to each treatment and marked with permanent marker for identification. Then, each egg was candled and earmarked to identify the site of the injection. After disinfection of egg shell surface with 99.90 % ethyl alcohol-laden swab, a pin head size (0.30 mm diameter) hole was made just below the air cell opposite to head spot using a sharp modified egg shell driller dipped in 99.90 per cent ethanol to sterilize the tip. Though this hole 0.5 ml of (In-ovo injection) one of the following nutritive solution was injected into the amnion using an insulin syringe with 31 gauge needle (0.25 mm x 8 mm) to a depth of about 8 mm without disturbing the air cell.
1. Non injected control
2. Injected control (0.5 ml of normal saline solution)
3. 0.5 ml of 10% glucose solution
4. 0.5 ml of 0.5% lysine solution
5. 0.5 ml of 0.5% threonine
6. 0.5 ml of 0.5% β-hydroxy-β-methylbutarate (HMB)

Control eggs were removed from the incubator together with the treated groups, and kept in the same environment for 15 minutes (time utilized to complete the In-ovo injection procedure for each group) to equalize the conditions for all treatment groups. A validation test was also carried out to confirm the site (Amnion) of deposition of nutrient solution. The group of eggs designated as injected controls were injected with 0.5 ml of 0.9% normal saline to rule out a possible negative response caused by the stress of injection and handling. Prior to each injection (between eggs) the needle was immersed in 99.90% ethanol and replaced between treatments. The injection area was disinfected with 99.90% ethyl alcohol and the hole was sealed with melted paraffin wax and transferred to hatching trays. A validation test using a water-soluble dye was carried out to confirm the site (Amnion) of deposition of nutrient solution. After completion of In-ovo injection, all eggs were transferred and incubated in hatching trays at the dry bulb temperature of 36.3°C and the wet bulb temperature of 30.2°C without turning from 19-21 days. The hatch was taken on day 21. The hatchability and hatch weight of the chick was recorded treatment wise and statistically analysed.

The hatched out 288 broiler chicks from were randomly allotted into 6 treatment groups each with three replicates of sixteen chicks for each replicate. The chicks were fed ad libitum with broiler pre-starter, starter and finisher mash as per BIS (2007) specifications from 1-7, 8-21 and 22-42 days of age respectively. Data on sixth week body weight, FCR, absolute weight of digestive organs at sixth week of age was recorded by using an electronic balance with 0.2 g accuracy. The relative weight was calculated based on live body weight and expressed as per cent of live weight. Six birds from each treatment were subjected to slaughter as per the method of Arumugam and Panda (1970) following overnight feed withdrawal. The weight of the digestive organs viz. proventriculus, gizzard, liver, pancreas, small intestine and large intestine all without contents were recorded and expressed as g/100 g live weight. The broiler chickens were fed ad libitum feed during the experimental period. Feed consumption up to 6th week was recorded. Feed conversion ratio was calculated by dividing average feed consumption by average body weight gain.

Data recorded in the biological experiments were subjected to one way analysis of variance (ANOVA). The statistical analyses were carried out with the Statistical Package for Social Science (SPSS, 1999 for windows version 17; SPSS GmbH, Munich, Germany) to determine analysis of variance between groups.
Means were compared by Duncan multiple range comparison test (Steel and Torrie, 1981) with level of significance (P<0.05). All the experimental procedures were assessed and approved by the Institutional Animal Ethics Committee from the Tamil Nadu Veterinary and Animal Sciences University, Chennai -600 051 and all the institutional guidelines were followed.

Result and Discussion

Data on hatchability, hatchling weight, marketing body weight and feed conversion ratio and relative weigh of digestive organs of sixth week age broiler chicken as influenced by In-ovo feeding on 18th d incubation is presented in Table 1 and 2.

Table 1: Mean (±SE) hatchability, hatchling weight, marketing body weight and feed conversion ratio of broiler chicken as influenced by In-ovo feeding of various vital nutrients on 18th d of incubation.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Hatchability (%) (n=6)</th>
<th>Hatchling Weight (g) (n=96)</th>
<th>6th week Body weight (g)</th>
<th>Cumulative FCR (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>92.22c</td>
<td>47.25b</td>
<td>2080.6 (33)</td>
<td>2.21a</td>
</tr>
<tr>
<td>0.5% Normal Saline</td>
<td>94.44b</td>
<td>47.85s</td>
<td>2135.1 (36)</td>
<td>2.12a</td>
</tr>
<tr>
<td>0.5% Lysine</td>
<td>96.67a</td>
<td>48.79a</td>
<td>2159.9 (35)</td>
<td>2.04b</td>
</tr>
<tr>
<td>0.5% Threonine</td>
<td>96.67a</td>
<td>48.53a</td>
<td>2116.6 (34)</td>
<td>2.03b</td>
</tr>
<tr>
<td>0.5% HMB</td>
<td>96.67a</td>
<td>48.14ap</td>
<td>2241.9 (34)</td>
<td>1.91b</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td>0.83</td>
<td>0.32</td>
<td>34.35</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Value in each cell is mean of six observations; NS – Non significant, * Significant (P<0.05); Mean values sharing any one common superscript in a column do not differ significantly

In-ovo feeding significantly (P<0.05) improved hatchability and ranged from 94.44 to 96.67 per cent than control (92.22 per cent). In-ovo feeding with lysine or threonine produced significantly (P<0.05) heavier day old chicks (45.79 and 46.04 g) and was comparable with In-ovo glucose and normal saline fed groups. Control (44.96 g) was significantly (P<0.05) lowest body weight and this was comparable with glucose and normal saline groups. Hatchability significantly improved due to In-ovo feeding in this study was in agreement with Santos et al. (2010) who recorded improved hatchability of 89.04 to 91.25 % in maltose and vitamins injected groups and in control 90.49 %. Salmanzadeh (2012) confirmed the present findings of increased hatch weight by In-ovo injection of glucose. However, Bhanja and Mandal (2005) and Uni et al. (2005) reported no significant difference between In-ovo feeding and control. The sixth week body weight was a numerically increased in threonine fed group (2195.86 g), while the control birds had the lowest body weight of 2035.64 g. Kadam et al. (2013) and Lotfi et al. (2013) recorded increased body weight and weight gain in broilers injected with In-ovonutrients of betaine and gherline while Bello et al.
(2014) observed no significant difference. Sixth week cumulative FCR in broiler chicken fed with In-ovo nutrients was significantly (P < 0.05) improved than control. While the threonine (1.91) and HMB (1.93) injected chicks registered significantly better FCR compared to other treatments and control. The improved FCR obtained in the present study was conferred by Salmanzadeh et al. (2012) who found that the 6th week mean cumulative feed conversion ratio of broilers was better (1.88, 1.87 and 1.88) in the glucose In-ovo fed groups (15, 20 and 25 per cent) compared to control (1.91) and sham group (1.93).

Table 2: Mean (±SE) relative weight of digestive organs of broiler chicken at 6th week of age as influenced by In-ovo feeding of various vital nutrients on 18th d of incubation

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Liver</th>
<th>Pancreas</th>
<th>Proventriculus + Gizzard</th>
<th>Total Intestine</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Caecum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.02</td>
<td>0.27</td>
<td>2.33</td>
<td>5.07</td>
<td>0.86</td>
<td>1.64</td>
<td>1.34</td>
<td>0.82</td>
</tr>
<tr>
<td>In-ovo feeding of 0.5 ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5% Normal Saline</td>
<td>1.77</td>
<td>0.22</td>
<td>2.4</td>
<td>5.02</td>
<td>0.96</td>
<td>1.52</td>
<td>1.48</td>
<td>0.83</td>
</tr>
<tr>
<td>10% Glucose</td>
<td>1.78</td>
<td>0.28</td>
<td>2.27</td>
<td>5.18</td>
<td>1.07</td>
<td>1.61</td>
<td>1.3</td>
<td>1.04</td>
</tr>
<tr>
<td>0.5% Lysine</td>
<td>2.27</td>
<td>0.2</td>
<td>2.3</td>
<td>5.75</td>
<td>0.94</td>
<td>2.15</td>
<td>1.67</td>
<td>0.79</td>
</tr>
<tr>
<td>0.5% Threonine</td>
<td>1.88</td>
<td>0.29</td>
<td>2.42</td>
<td>5.06</td>
<td>1.1</td>
<td>1.75</td>
<td>1.35</td>
<td>0.71</td>
</tr>
<tr>
<td>0.5% HMB</td>
<td>1.79</td>
<td>0.28</td>
<td>2.26</td>
<td>4.85</td>
<td>0.96</td>
<td>1.66</td>
<td>1.37</td>
<td>0.89</td>
</tr>
<tr>
<td>Pooled SEM</td>
<td>0.17</td>
<td>0.02</td>
<td>0.15</td>
<td>0.19</td>
<td>0.07</td>
<td>0.16</td>
<td>0.11</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Value in each cell is mean of six observations; NS = Non significant. * Significant (P < 0.05); Mean values sharing any one common superscript in a column do not differ significantly

In-ovo feeding produced significantly (P < 0.05) heavier liver and pancreas on absolute weight basis. However, other digestive organ showed no significant difference both in absolute and relative weight basis in this study.

Control chicks had small liver (36.07 g) than In-ovo fed groups (38.27 to 50.47 g) while lysine produced heaviest liver, normal saline yielded the lightest liver. Whereas, the relative weight of liver was not affected by In-ovo treatments and ranged from 1.77 to 2.27 per cent of live weight. Increased liver weight obtained in this study was also reported by Maiorka et al. (2003) and Faye et al. (2006). Whereas, Pedroso et al., (2006) reported that liver weight was not affected by In-ovo feeding. In-ovo injection of lysine, threonine, HMB produced significantly (P < 0.05) heavier pancreas (5.75 to 6.42 g) than glucose (5.58 g), normal saline (4.77 g) and control (4.28 g) but did not affect the relative weight of pancreas (0.20 to 0.028 per cent). The present finding was contrary to Pedroso et al. (2006) who found that In-ovo feeding of glucose, linoleic acid and glutamine in different experiments did not affect the mean weight of the pancreas.
The absolute and relative weight of the proventriculus and gizzard weight was not affected by different In-ovo treatments and the absolute weighted ranged between 45.89 to 52.30 g and the relative weight ranged from 2.26 to 2.42 per cent. Similarly, the absolute weight (106.42 to 130.52 g) and relative weight (4.85 to 5.75 per cent) of intestine, the absolute weight (18.95 to 23.00 g) and relative weight (0.86 to 1.10 per cent) of duodenum, the absolute weight (32.95 to 48.25 g) and relative weight (1.52 to 2.15 per cent) of jejunum, the absolute (26.53 to 32.68 g) and relative weight (1.30 to 1.67 per cent) ileum and the absolute (15.40 to 21.03 g) and relative weight (0.71 to 1.04 per cent) of ceaca was also not affected by In-ovo injection of glucose, lysine, threonine and HMB in this experiment. In all these, the In-ovo fed chicks registered numerically higher weight than control. Similar findings were also reported by Pedroso et al (2006) concluded that In-ovo feeding produced no difference in digestive organs (proventriculus and gizzard and, duodenum, jejunum and ileum) weight. Similar findings were also reported by Chen et al. (2009) studied In-ovo feeding of ducks and reported no change in liver, proventriculus and gizzard weight and also intestinal weight when compared in control.

Contrary findings of increased intestinal weight by earlier workers Uni and Ferket, (2003), Salahi et al. (2011) and Rocha et al. (2013). Heavier digestive organs were obtained in In-ovo feeding by Santos et al. (2010) and Lotfi et al. (2013). Increased proventriculus, gizzard weight was also recorded by Rocha et al. (2013). In-ovo feeding of chicken had resulted in heavier duodenum, jejunum, ileum as reported by Maiorka et al. (2003) and Salahi et al. (2011).

Conclusion

In-ovo injection of glucose, lysine, threonine and HMB on 18th of incubation produced significantly heavier liver and pancreas on absolute weight basis. However, other digestive organ absolute and relative weights were not significantly influenced in this study.

Acknowledgement

The author greatly acknowledge the Tamil Nadu Veterinary and Animal Sciences University, Chennai-51 for providing all infrastructural facilities and financial support to carry out this work.

References

